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Students often tackle programming problems with a flawed understanding of

what the problem is asking. Some pedagogies attempt to address this by en-

couraging students to develop examples in the form of input–output assertions

(henceforth “functional examples”), independent of (and typically prior to) devel-

oping and testing their implementations. However, without an implementation to

run examples against, examples are impotent and do not provide feedback. Conse-

quently, students may be inclined to begin their implementations prematurely—a

process whose comparatively ample feedback may mask underlying misunder-

standings and instill a false sense of progress.

In this dissertation, I demonstrate that providing students with timely feedback

on their functional examples incentivizes them to develop functional examples,

improves the quality of their test cases, and may improve the correctness of their

implementations.



Executable Examples:

Empowering Students to Hone Their Problem Comprehension

by

John Wrenn

B. A., University of Rhode Island, 2015

Sc. M., Brown University, 2018

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

March 2022



© Copyright 2022 by John Wrenn

iii





This dissertation by John Wrenn is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Shriram Krishnamurthi, Director

Recommended to the Graduate Council

Date
Kathi Fisler, Reader
Brown University

Date
Mark Guzdial, Reader
University of Michigan

Date
Tim Nelson, Reader
Brown University

Date
Joe Politz, Reader

University of California, San Diego

Approved by the Graduate Council

Date

Dean of the Graduate School

iii







A C K N O W L E D G E M E N T S

FILL





C O N T E N T S

List of Figures xi

1 Introduction 1

1.1 Self-regulation through systematic problem solving 2

1.2 Supporting systematic problem solving 4

1.3 Executable Examples 5

2 Assessing Input–Output Examples 9

2.1 Measures 9

2.1.1 Relationship Between Metrics 10

2.1.2 Relationship to Binary Classification Metrics 11

2.1.3 Curating Wheats and Chaffs 11

2.2 Theoretical Limitations 12

2.2.1 When correctness is not binary. 12

2.2.2 When wheats, chaffs behave nondeterministically. 13

2.2.3 When checking whether an input is within the domain is

undecidable. 13

2.2.4 When chaffs might not terminate. 13

2.2.5 When there is no well-defined API. 14

2.2.6 When examples are hard to write. 14

2.3 Alternatives 15

2.3.1 Coverage 15

2.3.2 Mutation Testing 16

2.4 Conclusion 16

3 Examplar-A: An IDE for Executable-Examples 19

3.1 Execution & Feedback Model 20

3.1.1 Assessing Validity 21

3.1.2 Assessing Thoroughness 22

3.2 Assignment Model 22

4 Other ways to incentivize early testing 25

4.1 Peer Review 25

4.1.1 Code Defenders 25

4.1.2 Captain Teach 25

4.2 Testing Quizes 26

4.2.1 Prather et al. 26

4.3 External On-Demand Automated Feedback 26

4.3.1 Ante 26



4.3.2 Web-CAT 27

4.4 External On-Demand Automated Feedback 28

4.4.1 Learn-OCaml 28

5 Pedagogic Context 29

5.1 Course Structure 29

5.2 Assignment Structure 29

5.3 Grading 31

5.4 Assignments 31

5.4.1 DocDiff 31

5.4.2 Nile 32

5.4.3 Sortacle 33

5.4.4 DataScripting 33

5.4.5 Oracle 35

5.4.6 Filesystem 35

5.4.7 Updater 36

5.4.8 Continued Fractions 36

5.4.9 TweeSearch 37

5.4.10 JoinLists 38

5.4.11 TourGuide 39

5.4.12 MST 40

5.4.13 MapReduce 40

5.4.14 Fluid Images 40

6 Are Executable Executable Appealing, Helpful? 43

6.1 Method 43

6.1.1 Pedagogic Context 43

6.1.2 rq 1: Do students use Examplarα? 44

6.1.3 Do final submissions change? 45

6.2 Results 47

6.2.1 rq 1: Did students use Examplarα? 47

6.2.2 Did final submissions change? 50

6.3 Limitations 52

6.4 Indirect Benefits 53

6.5 Over-Incentivation? 54

7 Examplar-B: A Unified Development Environment 57

7.1 Complexities in Examplarα’s Usage Model 58

7.2 Integrating Testing and Implementation 59

7.2.1 Reducing the cost of context switching. 59

7.2.2 Encouraging students to begin with example-writing. 60

7.2.3 Making feedback independent from environment. 60

8 Will Students Test Without Coercion? 65

viii



8.1 Pedagogic Context 65

8.1.1 Assignment Structure 65

8.2 Prior Art 66

8.3 Discretizing Effort 67

8.3.1 Compartmentalization of Effort 67

8.3.2 Effort Across Assignments 68

8.4 Examples-First Adherence 68

8.4.1 When do students click Begin Implementation? 68

8.4.2 How thoroughly do students test prior to their implemen-

tation efforts? 70

8.5 Limitations 72

9 When Is Examplar Insufficient? 75

9.1 Related Work 76

9.2 Pedagogic Context 77

9.3 Navigating (Un)specified Behavior 78

9.4 Methods 79

9.5 Observations 81

9.5.1 Distribution of Questions 81

9.5.2 Not Using Examplar’s Feedback 82

9.5.3 Input Bias 82

9.5.4 Failure to Transfer 83

9.5.5 Not Understanding Examplar 84

9.5.6 Specification Preconceptions 86

9.5.7 Expanding the Specification 87

9.5.8 Tooling Pain Points 88

9.6 Limitations 89

9.7 Discussion 90

10 When else does Examplar work poorly? 91

10.1 When the Run is clicked infrequently. 91

10.2 When feedback is misaligned with incentives. 92

10.3 When the IDE is unfamiliar. 93

10.4 When tests are difficult to write. 94

11 Conclusion 97

11.1 Caveats and Consequences 98

11.1.1 Opportunities In the Assessment Model 98

11.1.2 Opportunities in the Implementation 98

11.1.3 Opportunities in Configuration 101

11.1.4 Opportunities in Circumstances 101

a Tenets of Chaff Curation 103

a.1 Favor covering the API 103

ix



a.2 Favor logical errors over programming errors 104

a.3 Avoid chaffs with multiple bugs 104

a.4 Avoid difficult-to-catch chaffs 105

a.5 Avoid long-running wheats & chaffs 105

a.6 Avoid non-deterministic chaffs 106

a.7 Never use chaffs prone to non-termination. 106

a.8 Never use ill-typed chaffs 107

Bibliography 109

x



L I S T O F F I G U R E S

Figure 1 Examplarα, the first of two versions of our specialized IDE

for example-writing. 6

Figure 2 Examplarα provides a specialized editing environment

for writing examples. Run Tests assesses the quality of

the suite by running it against wheats and chaffs. The

suite above is valid (i.e., it accepts both wheats), but it is

not particularly thorough (it rejects only two of the four

included chaffs); its assertions are also valid for a different

summary statistic: mean! 19

Figure 3 Upon each click of “Run”, Examplarα successively runs

the students’ tests against instructor-authored wheat and

chaff implementations. 20

Figure 4 While the wheats are sequentially executed, Examplarα
tallies which tests failed (and are thus invalid). If any

invalid tests are detected, the invalid tests are reported to

the student (without revealing why the tests failed), and

thoroughness is not subsequently assessed. 21

Figure 5 If an unexpected error halts any check blocks in the tests

file from executing, the execution of wheats ceases and the

invalidity is reported. 22

Figure 6 If all tests are valid, Examplarα then assesses the thorough-

ness of the suite by running its tests against each chaff.

In Examplarα’s feedback, chaffs are represented with bug

icons, which are shaded blue when the chaff is caught.

Mousing over the chaffs highlights the tests that rejected

it. 23

Figure 7 FILL 23

Figure 8 For each assignment: a combined violin and box-and-

whiskers plot illustrating the volume of Examplarα-submissions-

per-student for each assignment. The center line in each

box represents the number of times the median student

clicked Run Tests. The whiskers extend to the most extreme

data lying within 1.5 times the interquartile range. Points

indicate the exact number of submissions of outlying stu-

dents. 48



Figure 9 Examplarα submissions per-student for each of DataScript-

ing parts, rendered in the same manner as fig. 8. 49

Figure 10 The number of assertions in final test suites from each

year, rendered in the same manner as fig. 8. 51

Figure 11 Examplarα received attention on a university Facebook

page for anonymous admiration. 54

Figure 12 Examplarβ provides a unified editing environment for

example-writing, implementation, and testing. 57

Figure 13 TODO: Caption 60

Figure 14 FILL 62

Figure 15 While the wheats are sequentially executed, Examplarβ
tallies which tests failed (and are thus invalid). If any

invalid tests are detected, the invalid tests are reported to

the student (without revealing why the tests failed), and

thoroughness is not subsequently assessed. 63

Figure 16 If an unexpected error halts any check blocks in the tests

file from executing, the execution of wheats ceases and the

invalidity is reported. 63

Figure 17 If all tests are valid, Examplarβ then assesses the thorough-

ness of the suite by running its tests against each chaff.

In Examplarβ’s feedback, chaffs are represented with bug

icons, which are shaded blue when the chaff is caught.

Mousing over the chaffs highlights the tests that rejected

it. 63

Figure 18 Examplarβ discourages using the REPL discover the cor-

rect output of functions. Prior to the clicking of Begin

Implementation, REPL executions occur in the context of

a “dummy impl”—a wheat in which every function body

has been stubbed out with raise(’output hidden’). 64

Figure 19 FILL. Screenshot of feedback after implementation has

been begun. 64

Figure 20 Each point reflects the relative testing and implementation

effort of a student, measured in standard deviations from

their typical testing and implementation efforts. Imple-

mentation effort ranges on the x-axes; testing ranges on the

y-axes. Assignments are parenthetically numbered with

the index of their appearance in the course. 69

xii



Figure 21 The miit of each student (represented by points) on each

assignment. The shaded areas with fractional labels re-

flect each possible level of thoroughness as the proportion

of buggy implementations rejected. Underlaid box-and-

whiskers plots summarize the overall miit on each assign-

ment. 71

xiii





1

I N T R O D U C T I O N 1

The computing education literature is rife with studies in which student partic-

ipants inadvertently make significant progress solving the “wrong” problems.

Whalley and Kasto [2], for instance, conducted a think-aloud study of novice

programmers tasked with solving problems in a graphical, Karel-the-Robot-esque

“robot world”, in which students programmed a character to move around ran-

domly generated hallways. Students prematurely retrieved a plan and applied it,

not realizing it was inadequate; the interviewer had to prod the students before

they realized they had made an error at all:

Interestingly, [three of six students] retrieved the ‘counting integers’

schema. The students did not recognize that their program would not

work and did not attempt to verify the correctness of their solutions.

All three students were redirected by the interviewer who asked them

if they thought they should do anything to check that their solution

was correct.

Similarly, Prather et al. [3] conducted a think-aloud study of students attempt-

ing to solve a programming problem in the presence of an automatic assessment

system that would run students’ code against various test cases. The authors hy-

pothesized that access to this on-demand feedback would help students navigate

the implementation phase of the problem-solving process. Instead:

The most frequent issue these students encountered was a failure to

build a correct conceptual model of the problem.

Consequently, they tended to apply familiar-yet-inadequate plans, and entered

a myopic cycle of encountering and fixing errors, possibly exacerbated by the

presence of automated feedback:

The feedback from Athene seems to have given [several participants]

a false sense of progression through the problem.

1 This chapter adapts content previously published by the author in Executable Examples for Programming
Problem Comprehension [1].
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Analyzing the programming process of 37 students across two experience

groups (CS1 and CS2 students), Loksa and Ko [4] observed:

Participants often began coding without fully understanding the prob-

lem, leaving them with knowledge gaps in the problem requirements

and causing them to later stop implementation to address the gaps.

Amidst a field focused largely on the task of teaching students how to program,

these think-alouds suggest a vital complimentary skill: knowing when to program.

Loksa and Ko hypothesized that this failure occurred because novices lack the

metacognitive awareness to self-regulate their progress through the problem-

solving process. While educators vary slightly on what, exactly, this process

consists of, generally speaking, it is a process that begins with understanding

the problem, and ends with reviewing one’s solution. This critical, early stage

of building problem understanding occurs through reinterpretation — the act of

rephrasing and reformulating a problem statement to build understanding of it.

Only a minority of their participants (15 of 37) vocalized this stage of the problem

solving process.

1.1 self-regulation through systematic problem solving

One potential way to improve students’ development of problem comprehension

is to train them in a methodology that explicitly scaffolds the process of problem

solving. Educators have long attempted to support metacognition by instructing

students in an explicit problem solving methodology, ranging from Pólya’s

1945 How to Solve It [5] for mathematics, to How to Design Programs’s “Design

Recipe” [6], to Loksa et. al’s 2016 six-step metacognitive scaffold [7]. All three of

these scaffolds ask students to begin by reinterpreting the problem to ensure they

understand it, and to end by reviewing their solution.

George Pólya’s 1945 manual How to Solve It [5] advocates novice mathematicians

follow a four-step problem solving process:

1. Understand the problem. “You have to understand the problem.”

Pólya instructs students to first consider the unknown, identify the data, and the

condition that must be satisfied. He recommends students explicitly reinterpret the

problem drawing a figure, selecting a suitable notation, and writing down the sub-parts

of the condition to be satisfied.

2. Devise a plan. “Find the connection between the data and the unknown.”

Pólya instructs students to question whether they have seen the problem before, or

seen similar problems, and adapt their solutions. Failing that, he urges students to try

to restate the problem, or else attempt to first solve an easier variant of it.
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3. Carrying out the plan. “Carry out your plan.”

Pólya instructs students to decompose their plan into steps, execute each step, and

prove that each step is correct.

4. Looking back. “Examine the solution obtained.”

Finally, Pólya instructs students to check the result, the argument, and examine whether

the result could be derived differently.

In the pedagogical contexts considered within this dissertation, students are

instructed in the Design Recipe from How to Design Programs (htdp) [8], a six-step

process for producing an implementation from a specification:

1. From Problem Analysis to Data Definitions

Identify what must be represented and how it is represented.

2. Signature, Purpose Statement, Header

State what kind of data the function consumes and produces.

3. Input–Output Examples

Work through examples that illustrate the function’s purpose.

4. Function Template

Translate the data definitions into an outline of the function.

5. Function Definition

Fill in the gaps in the function template.

6. Testing

Ensure your implementation conforms to your examples.

The first three of these steps specifically scaffold the development of problem com-

prehension, and its last step prompts students to confirm that their understanding

matches their implementation.

At a high level, its steps provide a form of scaffolding [9] to lead a student from

a prose-based problem statement to a working program. The scaffolding steps ask

students to produce intermediate artifacts (signature/purpose, examples, code

template) that capture the problem at multiple levels of detail and abstraction.

The progression from data definitions to examples to code move the student

through different representations of the problem, providing a form of concreteness

fading [10] as students progress towards a symbolic-form solution to a problem.

Completed sequences of design-recipe steps form worked examples [11] that

students can leverage when considering new problems. A student might refer

to a design recipe example when writing a new program on an already-studied

datatype: this would focus on the examples, templates, and code features of

the example. When asked to work with a new datatype, the recipe suggests

higher-level steps that a student can follow to make progress on the problem.
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Templates are a form of program schema [12, 13] that students can recall and

reuse in constructing solutions to new problems. The LISP Tutor [14] builds on

a theory that students can recognize and adapt solutions to recursive problems,

though without an explicit step of articulating the template independently from

the code. The template, in contrast, provides an explicit scaffold that handles

traversing an entire data structure as part of implementing a solution to a specific

problem.

Several papers have begun to explore the positive impact of the htdp recipe on

students in different contexts. Fisler and colleagues on multiple projects [15, 16]

showed that htdp-trained students made fewer programming errors than students

trained in more conventional curricula. Schanzer et al. [17, 18] have found

improvements in middle- and high-school students’ abilities to solve algebra

word problems after working with a version of the design recipe.

1.2 supporting systematic problem solving

Of course, students trained to follow htdp might, nonetheless, not follow the

design recipe. For instance, Fisler et al. [19] conducted a think-aloud study

highlighting the experience of four students tasked with implementing Soloway’s

Rainfall problem. Although these students were encouraged to follow the design

recipe, none formulated any examples, and subsequently struggled with the

problem. Similarly, a study by Edwards and Shams [20] of students trained in

test-driven development and graded on test suite coverage found that students’

tests were both few and uninformative; most students wrote only exactly as

many tests as there were methods, and those tests tended to only evaluate the

“happy path” of their respective methods. Such mishaps illustrate the crux of the

self-regulation conundrum: although instructors can teach students techniques

that encourage self-regulation, choosing to practice those techniques is, itself, a

feat of self-regulation!

Consequently, we might advocate that instructors merely require that students

write examples before beginning programming [21, 22]. Instead, we ask: Are there

any reasons why example-writing might be less compelling to students than we think it

ought to be?

Yes. For one, input–output examples are completely inanimate until the student

completes their implementation (htdp step 5), at which point they become the

basis of a test suite (htdp step 6). In short: you cannot run your input–output

examples until you have an implementation to run them against. An implemen-

tation, on the other hand, may be run almost as soon as it is begun. Prather et.

al [3] hypothesize that students may begin their implementations prematurely

(at the expense of problem comprehension) because the implementation phase
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of problem solving provides interactive feedback (albeit counter-productive);

comprehension development does not.

We also observe that writing input–output examples cannot dispel consistent

misconceptions about the problem—even once those examples are adapted into

test cases. If a students’ misconception about a programming problem is con-

sistently reflected in both their examples and implementation, running those

examples as test cases will fail to detect any error.

Unalloyed, input-output examples are neither compelling, nor possibly even

helpful. There is no mechanism within htdp by which students can get timely

feedback as they write input–output examples, or assess whether those exam-

ples conform to the problem specification. This dissertation proposes such a

mechanism: executable examples.

Thesis

Providing students with timely feedback of their input–output examples

incentivizes them to develop input–output examples, improves the quality of

their test cases, and may improve the quality of their implementations.

1.3 executable examples

To make input–output examples animate, we execute them—though not against

students’ own implementations (which, in principle, may not yet exist). Rather,

we apply an assessment model (detailed in chapter 2) that can provide feedback

on their quality without the student having begun their implementation. We first

implement this model in Examplarα (pictured in fig. 1, detailed in chapter 7), a

development environment standalone from students’ usual implementation and

testing environment, which is specialized for writing examples. We primarily

deploy Examplarα in a college-level accelerated introduction to computer science

course (henceforth: CS-AccInt). The course, its assignments, and scope of

Examplar’s deployment is detailed in chapter 5.

The remainder of this dissertation builds on this foundation. Chapter 6 di-

rectly addresses the thesis of this dissertation: it describes the deployment of

Examplarα to CS-AccInt, and reports on a study demonstrating that Examplarα
was appealing, helpful, and seemingly non-harmful. Use of Examplarα was not

required; students nonetheless used it substantially. The quality of students’ final

test suites improved significantly over the previous offering of the course.

The promising results of this study prompted us to more deeply integrate

executable example feedback into students’ workflows. In chapter 7 we describe

the successor to Examplarα, “Examplarβ”, which integrates executable example
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include my-gdrive("median-code.arr")
# DO NOT CHANGE ANYTHING ABOVE THIS LINE

check:
  median([list: 1]) is 1
  median([list: 1, 2]) is 1.5
  median([list: 1, 3, 2]) is 2
  median([list: 0, 0, 1, 2, 3]) is 1
end

1
2
3
4 ▾

5 ▾

6 ▾

7 ▾

8 ▾

9

You caught 4 out of 4 chaffs:

🐛 🐛 🐛

The chaffs you caught are highlighted above in blue. Mouseover a chaff to see which of your tests
caught it.

Nice work! Remember, the set of chaffs in Examplar is only a subset of what we'll run your final test
submission against, so keep writing tests! You can continue to use Examplar to ensure that your tests
accept the wheats.

2 ⁄ 2

WHEATS 
ACCEPTED

4 ⁄ 4

CHAFFS
REJECTED

🐛

▾ Examplar ▾ File (median-tests.arr) Stop↴Run Tests

Figure 1: Examplarα, the first of two versions of our specialized IDE for example-writing.

feedback into the same development environment students use for testing and

implementation. This integration, in principle, reduces the self-regulation re-

quired from students to make use of executable example feedback: students no

longer need to consciously mediate their time between two separate development

environments.

The integration also gave us insight into how students allocated their effort

between example-writing, testing and implementation. Chapter 8 describes and

applies a novel measure for characterizing how thoroughly students explored

their homework problems with examples before undertaking the bulk of their im-

plementation work. Although this study was inadequate for attributing students’

behavior to the presence of Examplarβ (a before-and-after comparison in the style

of chapter 8 was not possible), we resoundingly did not observe any widespread

“test-last” behavior from students; students largely did write examples before the

bulk of their implementation work.

A student’s understanding of a problem does not only impact their interactions

with their code, it also influences their help-seeking interactions with course staff.

In chapter 9, we conduct a thematic analysis of the questions students asked

regarding the input–output behavior of assignments to CS-AccInt’s online course

forum. We find that many questions were prompted by Examplarβ’s feedback.

This reflects on Examplarβ’s value in the course—it prompted students to pose

questions to the course staff rather than proceed unawares with a misconception—

but also its shortcomings: Examplarβ’s feedback was not so elucidating as to

obviate the role of course staff. We also observe many questions that could have

been answered by Examplarβ, had the student first posed their question as an

input–output example; this suggests a degree of latent utility.

Although CS-AccInt was the primary context in which we studied Examplar,

it was not the only context we deployed the tool in. We deployed Examplarα
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in a programming language implementation and design course, and Examplarβ
in a segment of a “relaxed” introductory course (CS-Foundations). Neither

of these deployments was as smooth as that of CS-AccInt. The deployment

into the PL course was complicated by limitations of the assessment model;

these complications are described in section 2.2.4. The utility of Examplarβ in

CS-Foundations was stymied by pedagogic factors; we detail these obstacles in

chapter 10.





2

A S S E S S I N G I N P U T– O U T P U T E X A M P L E S 1

Input–output examples, like test cases, can be articulated as assertions. To assess

whether examples are both valid and thorough explorations of a problem, we

adapt the classifier perspective of assessing test suites [25, 26]. This perspective

views suites as classifiers of implementations, judging them as either correct or

buggy. Consequently, one can assess the quality of a test suite by seeing how

accurately it classifies sets of known-buggy and known-correct implementations.

A good test suite will mislabel few correct implementations, and catch most

buggy implementations.

However, unlike test cases, the intent of examples is not to test one’s implemen-

tation, but rather one’s understanding of the problem; we adapt our application

of this perspective to reflect this difference (see section 2.1.3).

2.1 measures

We adopt the measures of validity and thoroughness to quantify the quality of test

suites.

validity Validity is a binary measure. A suite is valid if it accepts (i.e., its

assertions pass) all correct implementations. Otherwise, it is invalid. A suite may

be invalid for a variety of reasons; particularly, it may have:

1. asserted incorrect behavior (e.g., sorting in the wrong direction),

2. asserted underspecified behavior (e.g., asserting that a sorting implementa-

tion is stable, if that was not specified),

3. simply have failed to compile or run altogether.

We assess whether a test suite is valid by running it against instructor-authored,

known-correct implementations (henceforth wheats [25]).

1 This chapter adapts content previously published by the author in Who Tests the Testers? [23], Executable
Examples for Programming Problem Comprehension [1], and Reading Between the Lines: Student Help-Seeking
for (Un)Specified Behaviors [24].
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thoroughness A suite is thorough if it rejects (i.e., its assertions do not

pass) buggy implementations. We assess the thoroughness of a suite by running

it against a curated set of buggy implementations (henceforth chaffs [25]). The

thoroughness of a suite is measured as the proportion of chaffs it rejects. In

section 2.1.3 we discuss our curation of wheats.

2.1.1 Relationship Between Metrics

Validity and thoroughness are jointly important for assessing the quality of a test

suite. It is trivial to construct a test suite that rejects all buggy implementations;

e.g.:

check:

1 is 2

end

...but such a test suite also rejects all correct implementations; it is not of any

practical value. Since the bug-catching capabilities of a test suite must not come at

the cost of rejecting correct behavior, the thoroughness of a test suite is predicated

on its validity2.

Our application of these metrics reflects this dependency. First, we assess valid-

ity and identify any invalid tests. Then, before assessing thoroughness, we must

(at least) discard these invalid tests. The auto-grading system of CS-AccInt per-

forms this filtering automatically. Examplar, in contrast, highlights the students’

invalid tests and requires that they are corrected (or eliminated) before thor-

oughness is assessed. We describe Examplar’s behavior more fully in chapters 3

and 7.

In both cases, validity is treated as the lowest bar a student must clear for their

test suite to be eligible for further assessment. A test suite that achieves validity

but then fails to demonstrate a modicom of thoroughness is nearly as useless as

the inverse — it is equally trivial to construct a test suite that accepts all possible

correct (and buggy) implementations; e.g.:

check:

1 is 1

end

Despite achieving perfect validity, clearly this is not a ‘half-credit’ test suite.

2 Those who would give up essential Validity, to purchase Thoroughness, deserve neither Validity nor

Thoroughness.
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2.1.2 Relationship to Binary Classification Metrics

These metrics are closely related to two of the conventional binary classification

metrics. The validity metric is closely analogous to the conventional metric of true-

negative rate, the proportion of classifications where both the true and detected

conditions are negative. Conversely, the thoroughness metric is closely analogous

to the conventional metric of true-positive rate, the propotion of classificatiosn

where both the true and detected conditions are positive. In this dissertation,

we prefer the terms “validity” and “thoroughness” for both social and semantic

reasons:

1. “Positive” is often colloquially associated with desirable conditions, and

“negative” with undesirable conditions. In the context of softwared testing,

the desired condition typically involves passing tests. This association is

opposite of the technical use of positive and negative in the context binary

classifiers. Just as medical tests detect illness, not wellness, software tests

detect bugginess, not correctness. However, rather than subjecting our peers

to this pedantry, we instead select terms whose value connotations match

their technical meaning: it is “good”, both coloquially and technically, for a

test suite to be valid and thorough.

2. We do not assess these metrics independently. As previously described, we

do not permit invalid tests to contribute to validity.

2.1.3 Curating Wheats and Chaffs

wheats If the problem specification leaves any behavior underspecified, it

is necessary to run suites against multiple correct implementations in order to

accurately identify invalidity [23]. For instance, consider a problem specification

that reads:

Write a function, median, that consumes a list of numbers and produces

the arithmetic median.

This specification, as worded, leaves the behavior of median on empty inputs

underspecified; it may be just as correct for an implementation to produce an

error as to return 0. In order for a suite to be valid for all implementations of

median, it must not include any assertions involving empty input lists. We can

accurately identify such assertions as invalid by checking them against two correct

implementations:

1. one that produces an error on empty inputs,
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2. another that produces some answer (say 0) on empty inputs.

If a student asserts that implementations should produce an error on empty

inputs, their suite will reject the wheat that produces 0 (and visa versa). Provided

that the set of wheats completely exercises the space of underspecified behaviors

permitted by the specification, accepting all wheats guarantees that a suite is

valid and will accept all correct implementations. (This is not always possible, as

discussed in section 2.2.)

chaffs To comprehensively assess how good a test suite is at detecting bugs,

the set of chaffs should include a wide variety of faults, both subtle and major.

The set of chaffs used for grading students’ final submissions on each CS-AccInt

assignment includes upwards of 20 buggy implementations ranging widely in

severity and subtlety. In Examplar, by contrast, we want to assess how thoroughly

have explored the conceptually interesting aspects of the problem—not how good

the student is at catching off-by-one errors. The selection of chaffs for Examplar

should reflect this difference, exercising logical misunderstandings that students

are likely to make. For instance, to assess the thoroughness of examples for median,

the set of chaffs could include implementations of mean and mode. The course

staff of CS-AccInt applied this principle to select chaffs for Examplar from the

superset of chaffs used for final grading. For further guidance (much of which

stems from hard lessons in the semesters since we first deployed Examplar), see

appendix A.

2.2 theoretical limitations

There are a handful of situations in which Examplar is poorly suited:

2.2.1 When correctness is not binary.

In the classifier approach to test suite assessment, correctness must be a well-

defined, binary property of implementations. We could not provide Examplar

for two assignments which lacked this property. For instance, in Sortacle,

students implemented the function sortacle, which consumed a sorting function

and produced true if the function was correct (and false, otherwise) by checking it

against a large number of generated inputs. A quality sortacle will be very good

at labeling sorts accurately, but this is an impossible task to do perfectly: it is

always possible to craft a sorting function so deviously buggy that no sortacle will

detect the flaw. Since it is impossible to craft a true wheat for such an assignment,

the classifier approach is inappropriate.
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2.2.2 When wheats, chaffs behave nondeterministically.

Examplar can be used for assignments that allow for an element of non-determinism,

a form of underspecified behavior. However, if the wheats and chaffs loaded into

Examplar are non-deterministic between runs, Examplar may provide students

with differing feedback between runs of the same suite. The allowance of non-

determinism should therefore be realized by loading Examplar with multiple

wheats that differ in their behavior, but are individually deterministic.

2.2.3 When checking whether an input is within the domain is undecidable.

To detect tests of unspecified behavior as invalid, instructors must craft multiple

wheat implementations that observably differ in their unspecified behavior. For

instance, a function that is defined for non-empty input lists suggests two wheats

that handle the empty-input differently: one that produces a value on an empty

input, and another that produces an error. This approach to developing wheats is

sufficient for problems in which it is possible to efficiently decide whether the

function’s input is outside of its specified domain.

However, if the procedure-under-test consumes a function as an argument —

one whose validity depends on it satisfying a behavioral invariant — it may be

impossible to efficiently detect (and, consequently, respond to) if the input is

out-of-domain.

For instance, the JoinLists assignment of CS-AccInt asks students to imple-

ment j-sort,

j-sort⟨A⟩(cmp :: (A, A → Boolean), jl :: JoinList⟨A⟩) → JoinList⟨A⟩

where cmp is a comparator predicate that’s satisfied if its first argument is greater

than than its second argument. If cmp is “buggy” (e.g., it does not actually define

a valid ordering of A), the behavior of j-sort is unspecified. Thus, to detect invalid

tests of j-sort, the instructor must provide wheats that observably differ when a

buggy cmp is provided. Unfortunately, proving or disproving the correctness of

an arbitrary cmp is undecidable. Wheats are inadequate for detecting this sort of

invalidity.

2.2.4 When chaffs might not terminate.

Examplar’s feedback is provided upon each click of Run, within the flow of

development. Care should be taken to ensure that running the wheats and chaffs

does not take too long. A particularly pernicious threat to timely feedback are
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chaffs that are buggy in ways that could lead to non-termination. This is a threat

unique to Examplar, not the assessment model as a whole.

In the Fall 2018 offering of CS173: Programming Languages, students imple-

mented a series of program interpreters; accordingly, the chaffs were comprised of

buggy interpreters. In a correct implementation of these interpreters, a program

like:

(let [f (lambda (x) (f x))]

(f 0))

is specified to produce an unbound identifier error. The wheats terminate with

this error virtually immediately. In contrast, a buggy chaff that implements let as

let-rec will recur infinitely.

In final grading, this had not posed an issue: the auto-grader timed-out chaffs

runs at ten minutes, and counted timeouts (or running out of memory) as catching

the chaff. Unfortunately Examplar strongly disincentivizes such tests: a non-

terminating chaff will, given enough time, crash one’s browser tab. This pitfall

forced students to comment-out or delete such thorough tests entirely in order to

make forward progress on the assignment.

2.2.5 When there is no well-defined API.

Our assessment model requires that the instructor author sets of correct and

buggy implementations that match the API of the students’ implementation. Our

assessment model is thus only suitable for use on assignments where a public

API is defined.

2.2.6 When examples are hard to write.

Examplar is not useful when articulating examples accurately is difficult or im-

possible. For instance, TourGuide asked students to implement a function that

consumes a graph of locations, start points and end points, and produces the

length of the shortest path between those termini. Unfortunately, the Euclidian

distances between points is very often irrational and therefore must be represented

approximately in floating point. To complicate matters, the accuracy of a sum-

mation of floating point numbers depends on the order in which the numbers

are added. Thus, it is very difficult to express the right answer accurately on a

computer.
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2.3 alternatives

Assessing the validity of student tests by ensuring it accepts an instructor-

authored implementation is commonplace [27, 20, 28, 26, 29, 25]. This check

is particularly important when using student tests to assess each others’ imple-

mentations [27, 20, 28, 30].

Similarly, many instructors assess the quality of student tests as we do, by

running them against a corpus of incorrect implementations, and checking what

fraction of these a test suite rejects. This corpus may be sourced from stu-

dents [31, 32, 33, 20, 30], from machine-generated mutations of a reference im-

plementation [34, 35, 33], or—as in our case—crafted by the instructor [25, 26].

Alternatively, instructors can use code coverage as a proxy for thoroughness.

2.3.1 Coverage

Coverage measures quantify the ‘amount’ of code of an implementation that is

explored in the course of running tests. Statement coverage, for instance, counts

the proportion of syntactic statements executed at any point in the course of

running tests; a variation, edge coverage computes the proportion of edges in

the program control flow graph that have been explored. Coverage metrics are

efficient to compute, are available in many popular programming languages

and development environments, and do not require the presence of a separate

reference implementation (and, consequently, is suitable on assignments with

no well-defined API). Because of these qualities, coverage metrics are popular in

professional software engineering, lending authenticity to their use in classroom

settings. [36] The automated assessment systems ASSYST [37], Web-CAT [27],

and Marmoset [38] all use coverage.

However, coverage is not truly a measure of how well a test suite explores a

problem, merely how well it explores an implementation. A student achieve both

perfect validity and perfect coverage by making many method calls with varied

inputs, all-the-while not asserting any properties about their outputs. [26] Such

a suite will likely “cover” any given implementation, but utterly fails to be an

alternative representation of the problem specfication.

Furthermore, although coverage-based metrics do not require the presence of

an instructor-authored reference implementation, they nonetheless require that

some implementation is available against which tests can be executed. When this

implementation is not one provided by the instructor, it is typically the student’s

own implementation that coverage is assesed on. In such circumstances, obtaining

meaningful feedback from coverage requires first attaining a reasonably complete
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implementation; such an arrangement clearly fails to encourage an examples-first

development style.

Pehaps out of some combination of these factors (and more), emprical studies

of code coverage find that it is a poor proxy for thoughness. A study by Edwards

and Shams [20] of students trained in test-driven development and graded on

test suite coverage found that students’ tests were both few and uninformative;

most students wrote exactly as many tests as there were methods, and those tests

tended to only evaluate the “happy path” of their respective methods.

2.3.2 Mutation Testing

In the mutation testing [39] approach to test suite assessment, a given, base

implementation (either instructor’s or the student’s own implementation) is pro-

grammatically “mutated” into buggy variations. Mutation testing is an effective

technique by which software engineers can assess the efficacy with which their

test suites will detect real-world faults [40]. As arbitrarily large sets of mutants

can be generated very cheeply, this method is seemingly an attractive alternative

to manually-authoring chaffs.

However, the unsupervised generation of mutants poses its own challenges in

pedagogic contexts:

1. The distribution of bugs introduced by random mutations is likely to be

dissimilar from the distribution of bugs desired by instructors for pedagogic

reasons. Chaffs used for assessing student understanding, for instance,

should exercise the conceptually interesting corners of problems—(usually)

not off-by-one errors.

2. While a variety of methods exist for generating mutants, these do not gen-

erally also produce human-readable explanations of the bugs they contain.

When a test suite fails to reject a mutant, a programmer (either the instructor

or student) must manually decipher the mutation to produce an actionable

plan for improving the suite.

3. The mutant-generating process may create mutants that fail to introduce

bugs (the “equivalent mutant problem”). These non-buggy mutants must

be accounted for, but doing so is difficult [41].

2.4 conclusion

The range of assignments our assessment model can be used on is more limited

than that of either mutation testing or coverage-based metrics, both of which can
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be used on assignments where no instructor-authored reference implementation

exists.

However, this apparent advantage of the alternatives comes at a cost: when

the student’s own implementation is used to compute coverage or as a basis for

mutants, the usefulness of the resulting measures depends on the completeness of

the student’s implementation. So, even if we were to adopt coverage or mutation

testing for Examplar, we would still need to produce a reference implementation

so that feedback could be provided before implementation. We are, then, still

limited to assignments with well-defined APIs. And, once a reference imple-

mentation has been carefully authored by the instructor, it is relatively easy to

hand-mutate it into additional wheats and chaffs.

This artisinal approach to assessing validity affords the instructor a degree

of control mutants lack: the set of chaffs can be curated to excercise whatever

qualities of the problem the instructor feels are pedagogically important. We

take advantage of this control in Examplar: whereas chaffs used for final grading

exercise subtle implementation bugs, chaffs selected for examplar can correspond

to major, logical misonceptions of the problem.
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A
Figure 2: Examplarα provides a specialized editing environment for writing examples.

Run Tests assesses the quality of the suite by running it against wheats and chaffs.

The suite above is valid (i.e., it accepts both wheats), but it is not particularly

thorough (it rejects only two of the four included chaffs); its assertions are also

valid for a different summary statistic: mean!

Examplarα (pictured in fig. 2) provides a specialized version of the usual

Pyret [42] editing environment2 tuned for writing examples as input–output as-

sertions. Students write their assertions just as they would in Pyret’s usual editor.

However, Examplarα replaces the usual editor’s Run button with a Run Tests

1 This chapter adapts content previously published by the author in Executable Examples for Programming
Problem Comprehension [1].

2 https://code.pyret.org/editor

https://code.pyret.org/editor
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Run

Run tests

against wheats

Are all

tests valid?

Run tests

against chaffs

Report validity

and thoroughness.
Report validity.

yes

no

Figure 3: Upon each click of “Run”, Examplarα successively runs the students’ tests against

instructor-authored wheat and chaff implementations.

button, which assesses the student’s suite for validity and thoroughness against

instructor-authored implementations (in the manner described in section 2.1).

Consequently, students can use Examplarα to develop and assess their examples

independent of their implementation progress.

3.1 execution & feedback model

Examplarα, in contrast to the usual Pyret IDE (CPO), is an IDE expressly for

the development of examples. Whereas the CPO provides an editor and execu-

tion environment for any Pyret file (be it code.arr, tests.arr or common.arr)

Examplarα only provides an editing environment for an assignment’s tests.arr

file. CPO’s “Run” button is replaced in Examplarα with a Run Tests button, which

initiates the example quality feedback process. Examplarα does not ever execute

the student’s tests.arr file against their own code.arr file.

http://code.pyret.org/
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include my-gdrive("median-code.arr")
# DO NOT CHANGE ANYTHING ABOVE THIS LINE

check:
  median([list: 1]) is 1
  median([list: 1, 2]) is 1.5

  median([list:]) is 0

  median([list: 1, 3, 2]) is 2
  median([list: 0, 0, 1, 2, 3]) is 1
end

1
2
3
4 ▾

5 ▾

6 ▾

7
8 ▾

9
10 ▾

11 ▾

12

Your tests rejected 1 out of 2 wheats:

⚙

The wheats your tests rejected are highlighted above in red. Mouseover a wheat to see which of your
tests rejected it. Are these tests consistent with the problem specification? Do they test unspecified
behavior?

1 ⁄ 2

WHEATS 
ACCEPTED

?

CHAFFS
REJECTED

⚙

▾ Examplar ▾ File (median-tests.arr) Stop↴Run Tests

Figure 4: While the wheats are sequentially executed, Examplarα tallies which tests failed

(and are thus invalid). If any invalid tests are detected, the invalid tests are

reported to the student (without revealing why the tests failed), and thoroughness

is not subsequently assessed.

Instead, upon each click of “Run Tests”, Examplarα successively runs the stu-

dents’ tests against instructor-authored wheat and chaff implementations, and

must specially handles a variety of success and failure modes of Pyret test execu-

tion. First, Examplarα runs the student’s tests against the wheat implementations

to determine whether the tests are valid. Then, it runs the student’s tests against

the chaff implementations.

3.1.1 Assessing Validity

Examplarα begins by executing the students’ test suite against each of the wheat

implementations. While the wheats are sequentially injected, Examplarα tallies

which, if any, of the students’ tests have failed (and are thus invalid). If any

invalid tests are present after wheat execution completes, those invalid tests are

reported to the student without revealing why the tests failed (pictured in fig. 4)

and thoroughness is not subsequently assessed.

If a wheat fails because an unexpected error was encountered in a check block,

the invalidity is reported (as in fig. 5) and the further execution of wheats ceases.

CPO provides extensive information in its presentation of errors and testing

results3 [43]. For instance, if a test fails because the two halves of an equality

assertion are not equal, CPO displays the values that each half evaluated to. This

is undesirable in Examplarα, as a student may be overly tempted to intentionally

write failing assertions to discover what the behavior of wheats is, rather than

closely read the assignment specification to determine the behavior on their

own. Our intention is that Examplarα supplements—but does not replace—the

3 https://github.com/brownplt/pyret-lang/wiki/Error-Reporting,-July-2016

https://github.com/brownplt/pyret-lang/wiki/Error-Reporting,-July-2016
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include my-gdrive("median-code.arr")
# DO NOT CHANGE ANYTHING ABOVE THIS LINE

check:
  median([list: 1]) is 1
  median([list: 1, 2]) is 1.5

  raise("Error!")
end

check:
  median([list: 1, 3, 2]) is 2
  median([list: 0, 0, 1, 2, 3]) is 1
end

1
2
3
4 ▾

5 ▾

6 ▾

7
8
9

10
11 ▾

12 ▾

13 ▾

14

?

WHEATS 
ACCEPTED

?

CHAFFS
REJECTED

1 check block ended in an unexpected error, and some tests in this block may not have run.

check-block-1
An unexpected error halted the check-block before Pyret was finished with it. Some tests may not
have run.

"Error!"

(Show program evaluation trace...)

▾ Examplar ▾ File (median-tests.arr) Stop↴Run Tests

Figure 5: If an unexpected error halts any check blocks in the tests file from executing, the

execution of wheats ceases and the invalidity is reported.

assignment specification. Examplarα therefore removes the interaction pane and

suppresses nearly all forms of program output. Examplarα only displays errors

that prevent assertions from running.

3.1.2 Assessing Thoroughness

If all tests are valid, Examplarα then assesses the thoroughness of the suite by

running its tests against each chaff. As shown in fig. 6, chaffs are represented

with bug icons, which are shaded blue when the chaff is caught; mousing over

the chaffs highlights the tests that rejected it.

3.2 assignment model

When a student opens a tests.arr file in Examplarα, the IDE must fetch the

appropriate wheat and chaff implementations. Examplarα achieves this by ex-

tending CPO with a limited notion of assignment. An assignment, in the context

of Examplarα, is merely a world-readable Google Drive folder created by an

instructor that provides wheats, chaffs, and starter files in a prescribed layout. At

the top-level of this folder, there must exist:

1. A folder named “wheat”, containing wheat implementations.

2. A folder named “chaff”, containing chaff implementations.

3. A file ended with the substring “-tests.arr”, that serves as an initial template

file for students’ test suites.
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include my-gdrive("median-code.arr")
# DO NOT CHANGE ANYTHING ABOVE THIS LINE

check:
  median([list: 1]) is 1
  median([list: 1, 2]) is 1.5
  median([list: 1, 3, 2]) is 2
  median([list: 0, 0, 1, 2, 3]) is 1
end

1
2
3
4 ▾

5 ▾

6 ▾

7 ▾

8 ▾

9

You caught 4 out of 4 chaffs:

🐛 🐛 🐛

The chaffs you caught are highlighted above in blue. Mouseover a chaff to see which of your tests
caught it.

Nice work! Remember, the set of chaffs in Examplar is only a subset of what we'll run your final test
submission against, so keep writing tests! You can continue to use Examplar to ensure that your tests
accept the wheats.

2 ⁄ 2

WHEATS 
ACCEPTED

4 ⁄ 4

CHAFFS
REJECTED

🐛

▾ Examplar ▾ File (median-tests.arr) Stop↴Run Tests

Figure 6: If all tests are valid, Examplarα then assesses the thoroughness of the suite

by running its tests against each chaff. In Examplarα’s feedback, chaffs are

represented with bug icons, which are shaded blue when the chaff is caught.

Mousing over the chaffs highlights the tests that rejected it.

chaff Sep 4, 2018

wheat Sep 4, 2018

�b-tests.arr Sep 4, 2018

Name Last modi�ed

�b DOWNLOAD ALL

Drive Sign in

Figure 7: FILL
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Figure 7 depicts the assignment folder of a contrived assignment, “fib”, that

asks students to write examples for a function that produces elements from the

Fibonacci sequence.

The wheat and chaff folders are each filled with implementations, represented

either as Pyret source code (.arr) or compiled Pyret modules (.js). Course

staff typically used the source-code form for assignment development, then

replaced those files with compiled Pyret modules before releasing the assignment.

Distributing compiled Pyret modules rather than source code provides both an

end-user performance improvement, and prevents students from merely copying

the source code of the assignment’s implementations.
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Instructors have explored a variety of interventions to incentivize and train

students to test early and effectively. These approaches vary considerably in what

students do and how feedback is provided.

4.1 peer review

In peer-review based interventions, students improve the quality of their test

suites via interactions with each other.

4.1.1 Code Defenders

Code Defenders [45] is a multiplayer game that pits students against each other

in opposing teams: attackers, who iteratively introduce bugs into a program,

and defenders, who attempt to detect each successive round of bugs by writing

test cases. Examplar is similar to Code Defenders, except students exclusively

take the role of defenders, and course staff (who prepare correct and buggy

implementations in advance of putting out the assignment) serve as attackers.

Whereas Code Defenders is only usable in a multi-player setting, students may

use Examplar independently, without concurrent participation from anyone else.

Code Defenders’s use in classes has not yet been rigorously evaluated.

4.1.2 Captain Teach

Captain Teach [25] is a non-adversarial interface for students to peer-review their

tests and code. The peer review is in-flow, because it is done while the assignment

is in-progress. Unlike Code Defenders, the processes of peer review and develop-

ment in Captain Teach are not iterative. Later work [46] emphasized the creation

1 This chapter adapts content previously published by the author in Executable Examples for Programming
Problem Comprehension [1], Will Students Write Tests Early Without Coercion? [44], and Reading Between
the Lines: Student Help-Seeking for (Un)Specified Behaviors [24].
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of a small number test cases (“essential examples”) for peer review and early

submission. As with our work, these sweeps were graded programmatically in a

wheat–chaff assessment style. Unlike our work, this feedback was not available

to students on-demand.

4.2 testing quizes

In testing quiz interventions, students must complete gaps in instructor-authored,

incomplete test cases.

4.2.1 Prather et al.

Prather et al. [21] asked students, before they began their implementation, to

correctly predict the output of the specified function for a given input. As with

Examplar, this intervention provides an opportunity for students to verify that

their understanding of the problem matches the prompt. However, Examplar

differs from Prather et al.’s work in several key ways. First, Examplar requires

that students develop their own input data for examples. Second, in addition

to being valid, Examplar-assessed examples must also be thorough explorations

of the problem’s interesting facets. Third, our students were welcome to use

Examplar at any point in their development process (or not at all); Prather et

al.’s intervention was strictly situated between reading the problem prompt and

developing a solution.

4.3 external on-demand automated feedback

4.3.1 Ante

Michael Bradshaw’s Ante assessment framework [26] adopts the classifier per-

spective in all-but-name:

A test is a way of determining if a particular implementation meets all

of the specifications. So a perfect test will only accept implementations

that are correct and reject all other implementations.

In the Ante test assessment model, the instructor authors N implementations,

1 correct one, and N− 1 buggy ones. A student’s test is deemed “correct” if it

correctly classifies all N implementations. In contrast, we further decompose

“correctness” into validity and thoroughness.

Unlike Examplar, Ante additionally provides students with feedback on their

implementation quality. This is assessed by subjecting the student’s implementa-
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tion to an instructor-authored test suite. In the course-contexts where Examplar

has been used, this same, test-suite-based mechanism is used to provide students’

with a final grade on their implementation.

Ante withholds this implementation-quality feedback until the student submits

a test suite with perfect correctness. This restriction is intended to encourage

students to focus on testing before implementation. Similarly, Examplar withholds

thoroughness feedback if invalid tests are detected. However, Examplar does

not require students to catch all chaffs before getting implementation feedback

(i.e., the feedback students get from running their own test cases against their

implementation).

4.3.2 Web-CAT

In 2003, Web-CAT, an online automated assessment system, computed three

measures relating to student testing [27]:

1. test validity, how consistent the student’s tests are with the problem;

2. test completeness, how thoroughly the student’s tests cover the problem; and

3. code correctness, how correct the student’s code is.

Web-CAT assesses validity by counting the proportion of the student’s tests which

accept an instructor-authored reference implementation; assesses completeness

by computing the coverage of the student’s tests on their own implementation;

and assesses code correctness by computing the proportion of the student’s tests

which pass their own implementation.

We share Web-CAT’s nomenclature and approach of assessing validity, but dif-

fer in our treatment of thoroughness: we compute the sensitivity of test suites on

sets of known-buggy implementations; Web-CAT computes the suite’s coverage

on a particular implementation. Accordingly, we adopt the term “thoroughness”

rather than “completeness”, because while it is possible for a test suite to have

complete coverage of a particular implementation, it is impossible for any test

suite to completely catch all possible buggy implementations.

To ensure that “no aspect of the approach can be ignored”, Web-CAT multiplies

the measures together to produce a single, final grade. Similarly, we do not

compute the thoroughness of invalid tests; Examplar will refuse to compute

thoroughness if any invalid tests are present. However, Web-CAT’s mechanism,

as described, appears to have a vulnerability: a student can easily cover the

reference implementation in their tests with no risks of invalidity by simply

making many method calls with varied inputs, but accepting any output.
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Unlike Web-CAT, Examplar does not provide code correctness feedback. In

the course contexts where Examplar has been used, such feedback is provided

to students during final grading, albeit with a different mechanism: students’

implementations are assessed with instructor-authored tests. This difference

comes with both advantages and disadvantages. Our use of instructor-authored

tests to assess student code ensures that even students who test poorly still receive

a thorough assessment of their code. Web-CAT’s use of the student’s own tests

for this purpose provides student with additional incentive to write through tests;

i.e., to receive thorough feedback on their implementation.

4.4 external on-demand automated feedback

4.4.1 Learn-OCaml

Hameer & Pientka [47] present a substantial extension of the Learn OCaml IDE

to provide on-demand feedback of various kinds, including wheat–chaff style

evaluation of test suites. This work could be the basis for an exploration of

executable examples in OCaml. In its current form it does not fill this role due to

several key differences with our work:

1. Hameer & Pientka’s environment presents students with a full-fledged

grade report; we do not provide students with on-demand feedback of their

grade.

2. Hameer & Pientka’s environment provides feedback on students’ imple-

mentations; our students must evaluate their implementations with their

own test cases.

3. Hameer & Pientka’s environment does not distinguish between tests of the

spec and tests of implementations-specific behavior; our method does.

4. Hameer & Pientka’s environment has not yet been evaluated with research.
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P E D A G O G I C C O N T E X T 1

We primarily assess Examplar in the context of Brown University’s CSCI0190:

An Accelerated Introduction to Computer Science (CS-AccInt): chapter 6 contrasts

final submissions made by students in the Fall 2017 and Fall 2018 offerings of

CS-AccInt; chapter 8 analyzes the programming process of students in the Fall

2019 offering of CS-AccInt; chapter 8 considers the help-seeking behavior of

students in the Fall 2020 offering of CS-AccInt. To avoid needless repetition

in these chapters, this chapter describes factors common across the considered

offerings.

5.1 course structure

The primary course activity of CS-AccInt was programming projects. For all

programming projects, students were given a specification in prose and required

to submit an implementation consistent with that specification. For most projects,

students additionally submitted a test suite. The ordering (table 1), length (table 2)

and substance (section 5.4) of assignments varies slightly between years — these

differences are noted in subsequent chapters when appropriate.

5.2 assignment structure

For all programming projects (except where otherwise noted), students were

required to submit both a code file (containing their implementation of the

problem specification and white-box tests) and a tests file (containing black-box

tests consistent with the problem specification). In Fall 2019 and 2020, students

additionally submitted a common file—a shared dependency of both the code

and tests files—containing helper functions and testing data used in both code

1 This chapter adapts content previously published by the author in Executable Examples for Programming
Problem Comprehension [1], Will Students Write Tests Early Without Coercion? [44], and Reading Between
the Lines: Student Help-Seeking for (Un)Specified Behaviors [24].
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Table 1: The ordinal of assignments between offerings of CS-AccInt. An assignment is

listed as having multiple ordinals if it was broken up into sub-assignments prior

to the Fall 2020 offering of CS-AccInt.

Assignment 2017 2018 2019 2020

DocDiff 1 1 1 1

Nile 2 2 2 2

Sortacle 3 3 3 3

DataScripting 4, 6 4 4 4

Oracle 5 5 5 5

Filesystem 7 6 6 6

Updater 8 7 7 7

ContFracs 9 8 8 8

TweeSearch na na 11, 12, 16 9

JoinLists 10 9 9 10

TourGuide 11 11 13 11

MST 12 12 14 12

MapReduce 10 10 10 13

FluidImages 13, 14 13 15 14

Table 2: The length of assignments between offerings of CS-AccInt, in days. The lengths

of projects divided into multiple assignments are summed together.

Assignment 2017 2018 2019 2020

DocDiff 3 3 3 3

Nile 4 5 4 4

Sortacle 3 4 5 6

DataScripting 3 + 3 2 2 2

Oracle 4 5 5 5

Filesystem 4 2 2 2

Updater 7 7 7 6

ContFracs 5 7 5 8

TweeSearch na na 2 + 3 + 3 4

JoinLists 7 7 6 6

TourGuide 14 14 9 9

MST 7 7 7 7

MapReduce 7 7 6 5

FluidImages 7 + 4 9 10 12
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and tests. Prior to the introduction of common, students were advised to simply

duplicate common functions in both their code tests file.

5.3 grading

CS-AccInt’s grading has both automated and manual components. Manual

grading does some correctness checking, but focuses much more on design and

stylistic issues (and also evaluates non-code aspects like Big-O analyses).

Each of the code and test files are separately auto-graded. The code is graded

against a staff-authored test suite. This feedback is withheld from students until

after the assignment deadline.

Students tests are graded against wheats and chaffs (as described in chapter 2).

Students can run Examplar at any time before or after the deadline; these are

not monitored or graded. Because students can spend too long catching chaffs

by writing ever-more-complex tests we included only a small number (4–6) of

chaffs in Examplar. However, they are expected to write much more thorough

test suites to identify bugs in their implementations. Therefore, during grading,

their test suites are run against many more chaffs (upwards of 20). Their testing

grade is based on how well their valid tests do against these chaffs.

In all offerings of the course, feedback on the students’ implementation is

withheld until after the assignment due date. In the Fall 2017-2019 offerings of

CS-AccInt, wheat and chaff feedback (except for that provided by Examplar)

was withheld from students until after the assignment due date. In the Fall 2020

offering of CS-AccInt, students could receive the full set of wheat and chaff

feedback (with wheat and chaff names redacted) upon homework submission

(with unlimited resubmits allowed); unredacted feedback was withheld until after

the assignment due date.

5.4 assignments

The assignments of Fall 2020, most of which are archetypal of the preceding years,

are as follows:

5.4.1 DocDiff

Students implemented and tested a function computing a case-insensitive docu-

ment similarity metric using a bag-of-words model [48]:

fun overlap(doc1 :: List⟨String⟩, doc2 :: List⟨String⟩) → Number:

...

end
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The domain of overlap is additionally constrained in the assignment specification

to non-empty documents (i.e., non-empty lists). The result of this procedure on

inputs where either doc1 or doc2 are empty is unspecified.

Accordingly, we constructed two wheats with which we assessed the validity of

overlap tests: one producing 0 on empty inputs, and another producing an error.

5.4.2 Nile

Students implemented and tested a rudimentary book recommendation system.

At the heart of this assignment was a File datatype, defined in support code:

data File:

| file(name :: String, content :: List⟨String⟩)
end

The content field of Files is defined as a list of book names. If two books in two

different Files have the same name, they conceptually represent the same book.

The content field contains no duplicate elements.

Next, students implement a function that, given a book, recommends another

book:

data Recommendation⟨A⟩:
| recommendation(count :: Number, content :: List⟨A⟩)

end

fun recommend(title :: String, book-records :: List⟨File⟩) → Recommendation⟨String⟩
...

end

As with File, the content field of a Recommendation is a list of book titles. The order

of book titles in this list is unspecified behavior. Two wheats were provided,

providing these recommendations in opposite orders.

Finally, students implement a function that recommends popular pairs of

books:

data BookPair:

| pair(book1 :: String, book2 :: string)

end

fun popular-pairs(records :: List⟨File⟩) → Recommendation⟨BookPair⟩:
...

end

How pairs are ordered (i.e., which book is book1 and which is book2) is unspecified.

To simplify testing, the assignment support code overrides equality for BookPairs

to ignore ordering within pairs.
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5.4.3 Sortacle

Students implemented a testing oracle of functions that purport to sort lists of

people in ascending order by age. This assignment fails a prerequisite of our

assessment model: the correctness of a testing oracle is not a binary property (see

section 2.2.1). It is generally impossible for a testing oracle to perfectly identify

buggy functions-under-test; even the most thorough oracles will still mislabel

subtly buggy procedures-under-test as correct.

5.4.4 DataScripting

From 2018–2020, DataScripting was a multi-part assignment consisting of seven,

self-contained problems for which students submitted implementations, but not

tests:

1. Palindrome Detection Modulo Spaces and Capitalization

Implement the predicate is-palindrome :: String → bool, which is satisfied

only if the given string (notwithstanding spaces and case) is a palindrome.

This specification does not admit any unspecified behavior.

2. Sum Over Table

«Assume that we represent tables of numbers as lists of rows, where each row is

itself a list of numbers. The rows may have different lengths. Design a program

sum-largest that consumes a table of numbers and produces the sum of the largest

item from each row. Assume that no row is empty.»

This specification admits unspecified behavior in the presence of empty

rows.

3. Adding Machine

«Design a program called adding-machine that consumes a list of numbers and

produces a list of the sums of each non-empty sublist separated by zeros. Ignore

input elements that occur after the first occurrence of two consecutive zeros.»

This specification does not admit any unspecified behavior.

4. The BMI Sorter

«A personal health record (PHR) contains four pieces of information on a patient:

their name, height (in meters), weight (in kilograms), and last recorded heart rate

(as beats-per-minute). A doctor’s office maintains a list of the personal health

records of all its patients. [...] Design a function called bmi-report that consumes

a list of personal health records (defined above) and produces a report containing
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a list of names (not the entire records) of patients in each BMI classification

category. The names can be in any order.»

5. Data Smoothing

«In data analysis, smoothing a data set means approximating it to capture

important patterns in the data while eliding noise or other fine-scale structures

and phenomena. One simple smoothing technique is to replace each (internal)

element of a sequence of values with the average of that element and its predecessor

and successor. [...] Design a function data-smooth that consumes a list of PHRs

and produces a list of the smoothed heart-rate values (not the entire records).»

This specification does not admit any unspecified behavior.

6. Most Frequent Words

«Given a list of strings, design a function frequent-words that produces a list

containing the three strings that occur most frequently in the input list. The

output list should contain the most frequent word first, followed by the second

most frequent, then the third most frequent. If two words have the same frequency,

put the shorter one (in character length) first. You may assume that:

a) the input will have at least three different words

b) all characters are lowercase letters (there will be no numbers, punctuations,

or white spaces)

c) multiple words with the same frequency will have different lengths

»

This specification admits unspecified behavior if the aforementioned as-

sumptions are violated, but the Examplarα instance for this assignment

did not include multiple wheats, and thus was unable to detect tests of

unspecified behavior.

7. Earthquake Monitoring

Students implement a function that parses a list of numbers into dates and

associated data points, and summarizes that data by date. Dates are eight

digit numbers (e.g., “20151004”); data points are numbers ranging from 0

up-to 500. Dates are followed by one-or-more data points, occur within the

same year, and are ordered chronologically.

This specification admits unspecified behavior if the aforementioned as-

sumptions are violated, but the Examplarα instance for this assignment

did not include multiple wheats, and thus was unable to detect tests of

unspecified behavior.
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For the 2018 offering of the course, wheat–chaff feedback was available in

Examplar for all sub-problems except BMI Sorter. The 2019 and 2020 offerings

of the course did not offer any wheat–chaff feedback due to a combination of

technical and coordination issues.

5.4.5 Oracle

Students implemented a testing oracle for functions solving the stable marriage

problem of matching companies to candidates.

This assignment challenges students to apply pbt to a problem they most

probably cannot solve. At the time Oracle is assigned, the course has not

introduced the necessary algorithmic techniques, and we expressly do not expect

students to solve it. The assignment provides students with the source code of a

correct implementation, which can use refer to in addition to using it to test their

oracle.

As with Sortacle, on-demand wheat–chaff feedback was not available to

students on this assignment.

5.4.6 Filesystem

Students implemented and tested a variety of rudimentary Unix-style com-

mands for traversing a (in-memory) file structure with mutually-dependent

datatypes [49]. These procedures consumed a representation of a filesystem,

defined by a combination of two types. First, each File has a name and stores

some content:

data File:

| file(name :: String, content :: String)

end

Second, each directory has a name and contains additional sub-directories and

files:

data Dir:

| dir(name :: String, ds :: List⟨Dir⟩, fs :: List⟨File⟩)
end

The domain of dir has an additional constraint: the files in fs must have distinct

names. The behavior of the filesystem traversal functions is unspecified on

malformed filesystems. To detect tests of invalid inputs, the wheats for this

assignment differ in their behavior on malformed inputs.

One of the filesystem functions students implement is the procedure fynd, which

consumes a filesystem and a filename, and produces a list of paths to all files in

the filesystem matching that name:
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type Path = List⟨String⟩

fun fynd(a-dir :: Dir, fname :: String) → List⟨Path⟩:
...

end

The order of the result returned by fynd is unspecified. To detect over-constrained

tests of fynd’s output, the wheats for this function produce outputs in opposite

orders.

5.4.7 Updater

Students derived, implemented, and tested Huet Zippers [50], a data structure

encoding a n-ary tree which can be efficiently traversed and updated with a

virtual cursor.

While the traversal functions specified by this assignment do not possess

unspecified behavior, the Cursor datatype itself is entirely up to students to design

and implement. As such, tests that make assumptions about the structure of

Cursor are invalid. The wheat overrides the equality method of Cursors to always

return false.

5.4.8 Continued Fractions

Students implemented and tested a stream-based representation of continued

fractions and a number of functions operating over that representation.

The take routine,

fun take⟨T⟩(s :: Stream⟨T⟩, n :: Number) → List⟨T⟩:
...

end

given a Stream, extracts a prefix of the specified size, n, as a List. The behavior of

this function on negative values of n is unspecified. One wheat produces an error

on such inputs; the other produces an empty list.

The repeating-stream routine,

fun repeating-stream(numbers :: List⟨Number⟩) → Stream⟨Number⟩:
...

end

is given a list of numbers and produces a stream that repeats that list indefinitely.

The behavior of this function on empty input lists is unspecified. One wheat

produces an error on such inputs; the other loops infinitely. A variant of this

function (repeating-stream-opt) that produces a stream of Option⟨Number⟩ elements,

shares the same unspecified behavior.
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The fraction-stream routine (and its variant fraction-stream-opt),

fun fraction-stream(coefficients :: Stream⟨Number⟩) → Stream⟨Number⟩:
...

end

both consume a stream of continued fraction coefficients, and produces a stream

of increasingly-accurate approximations. The given coefficients must be non-

negative integers; the behavior of this function on coefficients not meeting this

condition is unspecified. Tests involving invalid coefficients were not fully de-

tected by the wheats for two reasons. First, because fraction-stream processes its

(potentially infinitely many) given coefficients lazily; it is not until its produced

stream is consumed that invalidity can be detected. Second, even when con-

sumed, both wheats raised an error on certain invalid inputs (as opposed to one

wheat producing an error, and the other producing a value); consequently, this

invalid test was marked as valid by Examplar:

check:

take(fraction-stream(repeating-stream([list: 1, -2])), 10) raises ""

end

5.4.9 TweeSearch

In this three-part assignment, students successively implement three variations of

a fuzzy search routine for Tweet. The implementation details of the Tweet datatype

vary between sub-parts, but the signature of the search routine is consistent:

fun search(

needle :: Tweet,

haystack :: List⟨Tweet⟩,
threshold :: Number

) → List⟨Tweet⟩:
...

end

Given a “needle” Tweet to search for, a “haystack” to search within, and a given

threshold of relevance to the needle that prospective matches must surpass, the

search function produces a list of matching Tweets in descending order of relevance

to the haystack.

In all three sub-parts of this assignment, Tweets have content, represented as a

String. This string must be non-empty. The threshold parameter of search must

range between zero and one (inclusive). To detect tests that violate these con-

straints, one wheat produces an error for unspecified inputs; the other produces

a value.

The query results are specified by the assignment to be arranged in descending

order of relevance. The relative ordering of equally-relevant tweets is unspecified.
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To detect over-constrained tests that assert a particular ordering of equally-

relevant results, the wheats produce equally-relevant sequences of tweets in

opposite orders.

5.4.10 JoinLists

Students implement several routines operating over a conc-tree list data structure

(called a “JoinList” by this assignment):

data JoinList⟨T⟩:
| empty-join-list

| one(elt :: T)

| join-list(list1 :: JoinList⟨T⟩,
list2 :: JoinList⟨T⟩,
length :: Number)

end

A join-list is invalid if its length field is not equal to the sum of the number of

elements stored by list1 and list2. To detect tests using invalid JoinLists as inputs,

the wheats differ on whether they produce an error or a value when given invalid

inputs.

One of the routines implemented by students is j-nth which produces the

nth element of the list. The given n must range between 0 (inclusive) and the

length of the given list (exclusive). The behavior of j-nth on out-of-range inputs is

unspecified. To detect tests providing invalid ns, one wheat produces an error on

such inputs and the other produces a value.

Students also implement j-max, which produces the maximum value in a non-

empty list:

fun j-max⟨A⟩(
jl :: JoinList⟨A⟩%(is-non-empty-jl),
cmp :: (A, A → Boolean)

) → A:

...

end

Which value is produced if the given JoinList contains equally maximal values is

unspecified. On such lists, the wheats differ in which maximal value is produced.

Students also implement j-sort which sorts the given JoinList using a given

comparator:

fun j-sort⟨A⟩(
cmp-fun :: (A, A → Boolean),

jl :: JoinList⟨A⟩
) → JoinList⟨A⟩:
...

end
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The relative ordering of “equal” values (per cmp-fun) is unspecified; the wheats

sort sequences of equal values in opposite orders.

An additional, unchecked restriction constrains the domain of j-max and j-sort:

the given comparator function must define a valid total ordering of elements.

Unfortunately, it is impossible to programmatically detect whether an arbitrary

comparator is valid in this regard. Wheats cannot be used to detect tests that

supply invalid comparators.

5.4.11 TourGuide

Students implement two routines over a Graph of named Places. First, dijkstra,

which consumes the Name of a starting point in the given Graph, and produces a set

of shortest paths to every other place in the Graph:

fun dijkstra(start :: Name, graph :: Graph) → Set⟨Path⟩:
...

end

The result when two equally-shortest paths exist to a place is unspecified. One

wheat selects the lexicographically first candidate; the other selects the lexico-

graphically last candidate.

Second, campus-tour, is a routine that consolidates a set of Tours (where each

Tour is a name plus a set of Places), a start position, and an Graph representing the

underlying topology those tours occur within, and produces a Path that visits all

of the places in the input set of tours:

fun campus-tour(

tours :: Set⟨Tour⟩,
start-position :: Point,

campus-data :: Graph) → Path:

...

end

The assignment specifies that this routine should select destinations greedily; i.e.,

choose the next place to visit by moving toward the closest, unvisited place in the

provided set. Again, the output when two shortest paths exist is unspecified—

one wheat selects the lexicographically first candidate; the other selects the

lexicographically last candidate.

The behavior of this function when given tours with duplicate names is un-

specified, as is its behavior when the tours include stops that are not within the

campus-data Graph—one wheat produces values for such inputs; the other raises

errors.
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5.4.12 MST

Students implemented both Prim’s (mst-prim) and Kruskal’s (mst-kruskal) minimum

spanning tree algorithms, as well as a “sort-of oracle”. This “sort-of oracle”

consists of:

• generate-input, which consumes a number and produces a Graph of that size.

• mst-cmp, which consumes a Graph, and two (possibly identical) purported

minimum spanning trees within that graph, and produces true if both

purported minimum spanning trees exist in the given graph and have the

same total weight.

• sort-o-cle, which consumes two purported implementations of minimum

spanning tree, and produces true if they produce equally-minimal spanning

trees on a number of randomly generated graphs.

The behavior of mst-cmp, mst-prim and mst-kruskal on unconnected input graphs is

unspecified. The output of mst-prim and mst-kruskal on graphs that admit multiple

minimum spanning trees is unspecified. The order of vertices in the produced

minimum spanning trees are unspecified. The behavior of generate-input on

negative inputs is unspecified.

5.4.13 MapReduce

Pairs of students implemented and tested the essence of MapReduce [51] (im-

plemented sequentially), and applied it to multiple problems. This included

re-doing some previous assignments (including Nile) in terms of the MapReduce

paradigm, using their implementation. The Nile-reprise subproblem of this

assignment retained the same domain constraints as Nile, and these invalid

tests of out-of-domain inputs were detected with multiple wheats in much the

same way. The assignment specification notes that the output orders of the

map-reduce related functions (namely anagram-reduce, anagram-map, and map-reduce)

are unspecified, and provides students with two utility functions (lst-same-els

and recommend-equiv) to assist them with testing. Over-constrained student tests of

output order are detected with two wheats, each of which produces outputs in

opposite orders from the other.

5.4.14 Fluid Images

Students implement image seam carving [52] twice: with memoization (liquify-memoization)

and with dynamic programming (liquify-dynamic-programming). Each of these func-
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tions consume an Image and a Number of seams to carve away, and produces a carved

image. This input Number must range between zero and the width of the input

Image (in pixels); the behavior of these procedures on inputs not meeting these

conditions is unspecified. One wheat produces an error if these conditions are

violated; the other produces the input image.
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A R E E X E C U TA B L E E X E C U TA B L E A P P E A L I N G , H E L P F U L ? 1

In the presence of Examplarα interface, we ask: Did students in an accelerated

introductory course (CS-AccInt)...

rq 1: . . . choose to use Examplarα?

rq 2: . . . ultimately submit more or better test cases?

rq 3: . . . ultimately submit more correct implementations?

6.1 method

We deployed Examplarα in fall 2018 in an accelerated introduction to computer

science course offered at Brown University.

6.1.1 Pedagogic Context

The course instructs students on the design recipe, algorithm and data structure

design, and algorithm (big-O) analysis. The course, its assignments and the

availability of executable example feedback are described more fully in chapter 5.

course structure The 2018 offering of the course featured fourteen pro-

gramming projects. For all of these projects, students were given a prose spec-

ification and were required to submit an implementation consistent with that

specification. For twelve of these projects, students additionally submitted a

test suite. We provided Examplarα on the ten projects that met the expectations

outlined in section 2.2.1. The projects included constructing a recommenda-

tion engine, modeling a filesystem [49], deriving Huet zippers [50], and seam

carving [52].

1 This chapter adapts content previously published by the author in Executable Examples for Programming
Problem Comprehension [1].
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demographics Sixty-seven students completed the course. Most were first-

year students, approximately 18 years old, with some prior programming experi-

ence (though not typically with prior testing experience). About 1/6 identified

as female. Admittance to the course required successful completion of four

assignments roughly corresponding to the first fifth of htdp.

pedagogy The instructor asked students to follow the entirety of the design

recipe while completing all programming projects. However, in requiring the

submission of only a final implementation and a test suite, the course essentially

enforced only the last two steps of the design recipe.

Previous iterations of the course attempted to apply the idea of a “sweep” [53]:

graded examples due several days before the final submission deadline. The fast

pacing of programming projects precluded this requirement for most assignments,

but it was hoped the habit of early example-writing would stick. However, from

the guilty admissions of former students,2 we believed that for projects lacking

this early deadline, students authored most (if not all) of their assertions after

developing their implementation. We hoped Examplarα would be an effective

alternative to strict early deadlines.

6.1.2 rq 1: Do students use Examplarα?

To determine whether students used Examplarα, we monitored their use of the

tool, instrumenting Examplarα to log the username and suite contents each time

a user clicked Run Tests.

rq 1 .1 : . . .when it is not required? We wanted to see the degree to which

students used Examplarα on their own volition; we thus did not force students to

use the tool. However, we feared students might not try the tool at all merely as

a matter of lack of exposure. We therefore required that students use Examplarα
for the first assignment, but made usage optional thereafter. To judge whether

students valued Examplarα on their own volition, we compare submission volume

for this first assignment to that of subsequent assignments.

rq 1 .2 : . . .when no final test suite is required? On one assignment,

DataScripting, students were not required to submit a test suite, but Examplarα
was still provided. This assignment was a collection of seven, small, independent

programming problems (adapted from Fisler et al. [16]). Students submitted

independent implementation files for each part, and we provided independent

Examplarα instances for six of the seven parts. To judge whether students

2 In particular, the former students who were hired to be 2018’s TA staff!
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Table 3: The position and duration of the comparable assignments in each year.

2017 2018

Assignment Ordinal Days Ordinal Days

DocDiff 1 3 1 3

Nile 2 4 2 5

DataScripting 4 3 4 2

Filesystem 7 4 6 2

Updater 8 7 7 7

JoinLists 10 7 9 7

MapReduce 11 7 10 7

used Examplarα when no final test suite was required, we compare volume of

submissions for this assignment to the other assignments.

rq 1 .3 : . . .throughout their development process? The Examplarα
usage logs provide only a partial view of students’ overall development process;

students still needed to use Pyret’s usual editing environment to develop their

implementations and to run their test suite against their own implementations.

Instrumenting Pyret’s usual editor was not feasible. The usage logs therefore do

not tell us how students used Examplarα in relation to their other development

progress. We supplement our understanding with a voluntary survey prompting

students for feedback to “help us evaluate if and how we use Examplarα in

future semesters”. In this survey, we asked students to self-report their use of

Examplarα, relative to their progress in developing their implementations.

6.1.3 Do final submissions change?

To determine whether Examplarα induced changes in students’ final submissions,

we looked at the 2017 offering of the course as a point of comparison. Aside

from the introduction of Examplarα, the 2018 offering of the course was virtually

unchanged from the 2017 offering. Of the fourteen programming projects in the

2018 offering, thirteen appeared in the 2017 offering. Both offerings used the same

entry process, featured similar lectures (which were held at the same times), and

provided similar resources for students. The student demographic was almost

nearly identical (except with 76 students, resulting in more total implementations

and tests).

Naturally, there were some changes; we did not restrict the 2018 course staff from

correcting significant issues as they saw fit. Nevertheless, of the ten assignments
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for which Examplarα was provided, seven were functionally identical to their

2017 offering (table 3); i.e., we are able to meaningfully assess the submissions

for both years using identical wheats, chaffs, and test suites. We use subsets of

these comparable assignments to judge whether the quality of students’ final test

suites and implementations improved. In section 6.3 we discuss the limitations of

this evaluation approach and why we did not perform a more tightly controlled

study.

rq 2: Do test suites change?

Of the comparable assignments, five required the submission of a test suite. We

use these five assignments to judge whether final test suite quality improved.

This subset of assignments is comprised of 320 final test suite submissions for

2017, and 269 final test suite submissions for 2018. We assess the quality of these

submissions using identical wheats and chaffs. We consider the size, validity and

thoroughness of test suites on these assignments in turn:

rq 2 .1 : does test suite size increase? To determine whether final test

suite size increased, we contrast the number of tests in suites from each year. We

hypothesized that, by gamifying the testing experience, Examplarα would induce

students to write more tests. We perform a two-sample t-test to determine if the

average number of test cases significantly differs between years.

rq 2 .2 : does validity improve? We hypothesized that, in aggregate, the

validity of final test suites would improve significantly from 2017 to 2018.

Examplarα’s feedback on validity is complete; i.e., if a test suite accepts all

of the wheats in Examplarα, it will accept all of the wheats in the autograder

used for final submissions. We sort the implementations for each year into the

dichotomous categories of valid and invalid, and perform a χ2 test to determine if

the proportion of valid test suites differ significantly.

rq 2 .3 : does thoroughness decline? The chaffs used to assess final

test suites included both mistakes of logic and implementation errors. How-

ever, Examplarα only included chaffs targeting the former, so it is conceivable

that students could misinterpret catching all chaffs within Examplarα as having

“finished” their test suite. We therefore must check whether the thoroughness of

students’ test suites declined. We compute the thoroughness of each final test

suite (section 2.1) and, conditioned on observing a decrease in the proportion of

chaffs caught between years, perform a χ2 test to determine if the difference is

significant.
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rq 3: Do implementations change?

We hypothesized that the direct aid provided by Examplarα for test development

would indirectly benefit students’ implementations. All seven of the comparable

assignments required the submission of implementations. This set of assignments

is comprised of 622 implementations from 2017, and 522 from 2018. We sort the

implementations for each year into the dichotomous categories of correct and

buggy using an instructor-authored test suite, and perform a χ2 test to determine

if the proportion of correct implementations significantly differ.

6.2 results

We present our findings for each of the research questions stated in section 6.1.

6.2.1 rq 1: Did students use Examplarα?

Students used Examplarα extensively on all assignments, clicking Run Tests a total

of 26,211 times. Figure 8 illustrates the distribution of Examplarα submissions

per-student for each of the assignments where Examplarα was provided.

rq 1 .1 : . . .when it was not required? Yes. Students used Examplarα
extensively even after the requirement to use it was dropped. The median

Examplarα-submissions-per-student for DocDiff of 22 (the first and only assign-

ment for which Examplarα use was required) was less than that of any other

assignment.3 Only a small number of students elected to not use Examplarα
thereafter: 4 students on DataScripting, 3 on FileSystem, and 1 on Updater,

MapReduce, TourGuide, and FluidImages.

rq 1 .2 : . . .when no final test suite was required? Yes. Figure 9 illus-

trates the distribution of the number of Examplarα submissions per-student for

each of DataScripting’s parts. Of 67 students who submitted an implementation

for at least one part, 64 used it for at least one part and 48 used it for every part for

which they submitted an implementation. Examplarα usage for this assignment

is particularly notable as students were given only two days to complete its seven

parts. Interpreted as a whole, Examplarα usage for this assignment was on par

with that for the other assignments; the median student submitted 33 suites to

Examplarα for DataScripting.

3 The individual parts of DataScripting received fewer submissions-per-student than DocDiff, but

each was a significantly smaller problem than any other in the course.
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Table 4: Did you use Examplarα to write examples or tests Before, During, and After complet-

ing your implementation? (Higher percentages are shaded darker.)

Usage Before During After

Rarely, or not at all 4.3% 4.3% 0.0%

A few times 21.7% 13.0% 13.0%

About half of the time 39.1% 17.4% 17.4%

Most of the time 21.7% 26.1% 17.4%

Almost always, or always 13.0% 39.1% 52.2%

Unsure 0.0% 0.0% 0.0%

rq 1 .3 : . . .throughout their development process? Probably. Twenty-

three students (approximately a third of the students enrolled in the course)

provided feedback on their Examplarα usage in the voluntary course feedback

survey. When asked, “Did you use Examplarα {before, during, after} developing

your implementation?”, a majority of students indicated they used Examplarα at

least “about half the time” at all stages. Self-reported Examplarα usage (table 4)

increased as implementation development progressed. Of course, students’ self

appraisal of their own testing diligence should be regarded with some skepticism,

especially on a non-anonymous survey distributed a month after the course

ended.

6.2.2 Did final submissions change?

Yes. In aggregate, the quality of both test suites and implementations improved

from 2017 to 2018.

rq 2: Did test suites change?

Yes. In aggregate, the validity of final test suites significantly improved, without

any degradation in their thoroughness, on the five comparable assignments.

Curiously, there was no significant difference in the size of students’ test suites.

We consider the size and quality of these suites in turn:

rq 2 .1 : did size increase? No, the number of assertions in final test suites

was approximately equal (fig. 10). With a Welch’s t-test, we determined that the

difference in average size between suites in 2017 and 2018 was not significant

(t(523.79) = 0.66871, p = 0.504).
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Figure 10: The number of assertions in final test suites from each year, rendered in the

same manner as fig. 8.

rq 2 .2 : did validity improve? Yes. In aggregate, final test suites in 2017

were 4.8 times more likely to be invalid than suites in 2018. Table 5 illustrates the

proportion of invalid test suites for each of the comparable assignments. Our χ2

test with Yates’ continuity correction revealed that the validity of test suites on

comparable assignments significantly differed by year (χ2(1,N = 589) = 52.373,

p < 0.01, ϕ = 0.303, the odds ratio is 0.16).

Why were fewer final test suites invalid in 2018? There are three important

causes of invalidity:

1. If a suite accepts some—but not all—wheats, it is almost certainly asserting

underspecified behavior. Final test suites in 2017 were 12.9 times more

likely to have this form of invalidity than suites in 2018.

Table 5: For each of the comparable assignments and in aggregate: the proportion of the n

final test suites which were invalid.

2017 2018

Assignment Invalid n Invalid n

DocDiff 29.7% 91 9.3% 75

FileSystem 30.3% 76 9.7% 62

Updater 20.0% 75 6.1% 66

JoinLists 17.9% 39 0.0% 33

MapReduce 64.1% 39 3.0% 33

Aggregate 30.3% 320 6.7% 269
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2. If a suite fails all of the wheats because one or more assertions rejected the

wheats, it may be that the student tested either underspecified behavior or

incorrect behavior. Final test suites in 2017 were 6.1 times more likely to

have this form of invalidity than suites in 2018.

3. A suite may fail to compile or run any of its assertions. This is often indica-

tive of the student failing to follow the template for test suite submission

(e.g., they tweaked the imports). Final test suites in 2017 were 1.3 times

more likely to have this form of invalidity than suites in 2018.

Table 6 details the number of final test suites of each form of invalidity for the

comparable assignments in 2017 and 2018.

rq 2 .3 : did thoroughness decline? No. Test suites in 2018 were no less

thorough (table 7). We can therefore be confident that the aforementioned gains

in validity did not come at the expense of thoroughness. As we do not observe

any decrease in thoroughness, we do not perform a χ2 test.

rq 3: Did implementation quality improve?

Inconclusive. Our χ2-square test with Yates’ continuity correction revealed that

the overall proportion of correct implementations (table 8) did not strongly

significantly differ by year (χ2(1,N = 1144) = 2.94, p = 0.086, ϕ = 0.053, the

odds ratio is 0.8).

6.3 limitations

threats to internal validity We feel it is reasonable to attribute the

differences we observed between years to Examplarα because of the extensive

similarities between the offerings. However, it may be that these different cohorts

of students behaved differently due to an external factor. Ideally, we would con-

vince ourselves that this is unlikely by considering submissions from additional

years. This has practical difficulties. First, course changes naturally accumulate;

few of the assignments in 2016 are functionally identical to those of 2018. Second,

the process of getting into the course changed significantly. In general, it is

problematic to intentionally refrain from changing offerings.

Alternatively, we could have performed a more tightly controlled A–B study.

We could have done this in a controlled lab setting, but we felt that this would

not be an authentic environment and hence would lack ecological validity. We

could have done this on the course level, but felt would be unethical to essentially

withhold early grade information to half the students. Ultimately, we felt that a
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cross-year comparison provided the most study utility, without compromising

our moral imperative to not hurt students.

threats to external validity Edwards and Shams [20] recently charac-

terized a corpus of student-authored test suites as being short (only one student

wrote more than 21 test cases), similar (89% of students wrote exactly 21 test

cases), and ineffective (their test suites missed a “significant proportion” of bugs).

However, the test suites we reviewed (produced both with and without the aid

of Examplarα) were generally long (students wrote an average of 39 test cases),

varied significantly in length (some students wrote more than 200 test cases), and

were highly effective at catching bugs.

This contrast leads us to believe there are manifold unaccounted factors that

significantly affect students’ ability to write tests. The suites we studied were

produced in an environment differing from Edwards and Shams in population,

course level, prior experience, language, problems, pedagogy, and tooling. A

holistic understanding of these factors is essential to moving our understanding

of testing pedagogy out of its infancy—but our significantly different outcomes

should provide an incentive for doing so.

6.4 indirect benefits

In addition to the quantifiable improvements we observed in students’ final

submissions, Examplarα provided a host of other benefits:

reduced load on course staff On the assignments for which we could

not provide Examplarα, course staffers reported an uptick in questions that they

felt could have been resolved by Examplarα; this also shows up in data gathered

about the use of hours [54, §6.1.2].

more robust autograding Providing Examplarα instances forced the

course staff to finalize the wheats for each assignment before the assignment went

out to students. This process uncovered major issues in four assignments, before

they were released to students.

teaching underspecified behavior Underspecification was not a learn-

ing goal of the course. However, it appears that some students did gain an

understanding of what underspecified behavior is via their use of Examplarα.

We received several Piazza posts in which students discovered they were testing

underspecified behavior, e.g.:
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Blueno Bears Admirers

953 - Wheats Passed: 2 / 2
October 11, 2018 · 

Asha Misra, Rebecca Aman and 11 others 5 Comments

 · Reply · 33w

Hero Park who cares when you get 3/4 chaffs
2Like

•••

Figure 11: Examplarα received attention on a university Facebook page for anonymous

admiration.

My test below was rejected by a wheat. I think this might because

I’m checking for unspecified behavior ie. when an empty string is

passed into the content of a file. Are we meant to assume that an

empty string can never be passed into the content of a file?

6.5 over-incentivation?

Students seemed to enjoy Examplarα’s gamification immensely (e.g., fig. 11).

Yet, on one assignment, FileSystem, the proportion of correct implementations

declined precipitously in 2018. We attribute this decline to differences in the time

allotted: students in 2018 were allotted half as much time as students in 2017.

Nevertheless, both the validity and thoroughness of test suites for this assignment

improved in 2018. We believe Examplarα may have monopolized students’ time

with test development—benefiting their test suites, but to the detriment of their

implementations.

We can adjust Examplarα’s “game” via our selection of chaffs, but this needs

experimentation. Too few, and students may prematurely conclude that they

are “done” with testing (and, crucially, problem comprehension). Too many,

and students may divert too much time to Examplarα and too little towards

developing their implementation. Finding this balance is therefore essential

future work. Students, themselves, may be poor judges of this balance. The

survey instrument described in section 6.1.2 additionally asked students if they

would have preferred Examplarα to have featured fewer, more, or about the same

number of chaffs; 60.9% of respondents answered “more chaffs‘, 34.8% answered

“about the same number of chaffs”, and only 4.3% of respondents answered

“fewer chaffs”.
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Table 6: For each of the comparable assignments and in aggregate: the proportion of final

test suites of each form of invalidity: (1) accepting Some—but not all—wheats,

(2) accepting None of the wheats because one or more test cases failed, and (3)

accepting none of the wheats because an Error prevented the suite from running.

2017 2018

Assignment Some None Error Some None Error

DocDiff 8.8% 8.8% 12.1% 0.0% 1.3% 8.0%

Filesystem 23.7% 6.6% 0.0% 4.8% 1.6% 3.2%

Updater 0.0% 16.0% 4.0% 0.0% 3.0% 3.0%

JoinLists 7.7% 7.7% 2.6% 0.0% 0.0% 0.0%

MapReduce 43.6% 20.5% 0.0% 0.0% 3.0% 0.0%

Aggregate 14.4% 11.3% 5.0% 1.1% 1.9% 3.7%

Table 7: For each of the comparable assignments and in aggregate: the number of chaffs

used by Examplarα, the Final number of chaffs used to assess students’ final test

suites, and the proportion of Final chaffs caught, on average, by students’ final

test suites.

Chaffs % Final Rejected

Assignment Examplarα Final 2017 2018

DocDiff 4 8 90.7% 99.0%

FileSystem 5 16 89.1% 90.7%

Updater 6 8 85.7% 85.2%

JoinLists 5 17 93.5% 89.3%

MapReduce 6 8 84.0% 89.0%

Aggregate 26 57 89.2% 91.0%
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Table 8: For each of the comparable assignments and in aggregate: the proportion of the n

final implementation submissions for each year that were correct.

2017 2018

Assignment Correct n Correct n

DocDiff 63.7% 91 74.7% 75

Nile 59.5% 74 68.6% 70

AddingMachine 38.2% 76 54.1% 61

Palindrome 86.8% 76 88.5% 61

SumLargest 84.2% 76 91.8% 61

Filesystem 77.6% 76 62.9% 62

Updater 28.0% 75 36.4% 66

JoinLists 64.1% 39 75.8% 33

MapReduce 69.2% 39 63.6% 33

Aggregate 63.2% 622 68.2% 522
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A
Figure 12: Examplarβ provides a unified editing environment for example-writing, imple-

mentation, and testing.

In controlled environments where students can be repeatedly reminded to

follow metacognitive scaffolds, students have higher productivity, self-efficacy,

and independence [7]. Where students are forced to solve input–output examples

before beginning their implementations, they may produce better solutions [21]

and make fewer errors [22]. However, left to their own devices students may lack

the metacognitive awareness to realize they even need to apply these scaffolds.

Students who are encouraged to follow the Design Recipe in lecture may not

1 This chapter adapts content previously published by the author in Will Students Write Tests Early
Without Coercion? [44].
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formulate any examples or test cases and consequently struggle [19]. Requiring

the final submission of test cases on assignments will coax students to write them,

but not necessarily well: A study by Edwards and Shams [20] of students trained

in test-driven development and graded on test suite coverage found that students’

tests were both few and uninformative; most students wrote exactly as many

tests as there were methods, and those tests tended to only evaluate the “happy

path” of their respective methods.

Given the bleak research literature, it is unsurprising that recent work [21, 22]

has explored (with success) forcing students to solve input–output examples

before allowing them to begin their implementation work. Unfortunately, forcing

students can make them resentful of the activity, want to get out of it as quickly

as possible, find it inauthentic, and create barriers of trust between students and

faculty. Thus, coercion should only be a last resort.

Fortunately, there is also cause to not abandon hope of students’ ability to

self -regulate: in chapter 6, we demonstrated that students can produce numerous,

high-quality tests given the right assessment methodology, and that, when aided

by helpful feedback, will even write tests when not required to do so by the

assignment. With the right incentives and support, students can be coaxed to

test—but can they be coaxed to test early?

We could not assess this question with Examplarα alone. The fact that Examplarα
was a separate IDE from the one that students used for implementation meant

that we had insufficient telemetry into the implementation process to explore how

students interleaved example-writing and implementation effort. This separation

also introduced considerable friction and complexity into Examplarα’s usage

model (see section 7.1).

To rectify these issues, we developed Examplarβ (pictured in fig. 12), which

provides a multi-file, unified editing environment for example-writing, imple-

mentation, and testing: each click of “Run”, regardless of which file is “open”

provides feedback about the quality of the students’ tests, and their own test

results on their implementation (if available).

7.1 complexities in examplarα ’s usage model

CPO (and, by extension, Examplarα) provides a single-file editing environment. To

develop their implementation, a student must open up a CPO browser tab to the

appropriate code.arr file. And, to develop their test suite, the student must open

a CPO browser tab to the appropriate tests.arr file. This arrangement lends

itself to a simple execution model: in each case, clicking Run always executes

the code edited in that tab, and the REPL is always situated in the context of the

top-level of the edited file. It also introduces context-switching cost: one cannot
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productively initiate a run in one tab, then switch to another, as several popular

web browsers (including Google Chrome) severely throttle Javascript execution

on background tabs; the run will seemingly never complete so long as one is not

actively watching it. The introduction of Examplarα further increases the cost

of context-switching: CPO and Examplarα cannot be simultaneously to edit one’s

tests.arr file; only one tab of these can be open at a time, thereby subjecting

context-switching students to Examplarα and CPO’s considerable loading times.

Unfortunately, context-switching between files and tools and crucial for getting

meaningful feedback, as feedback is perversely dependent on editing environ-

ment. While editing one’s implementation, it is extremely valuable to have easy

access to the results of running one’s tests on that implementation. Yet, to get

this feedback, the student must click Run in the context of their CPO instance

open to tests.arr. Then, having context-switched to that instance, one might be

tempted to augment their test suite with additional tests. Yet CPO cannot provide

feedback about the validity of one’s tests; only Examplarα provides that!

These dependencies between editing environment and feedback require stu-

dents internalize that:

1. to develop one’s implementation, open CPO to code.arr,

2. to test one’s implementation, open CPO to tests.arr, and

3. to develop one’s tests, open Examplarα to tests.arr.

...and to possess the metacognitive sophistication to reason about which kind of

feedback they need, and to possess the grit required to overcome the context-

switching costs involved in accessing that feedback.

7.2 integrating testing and implementation

Examplarβ seeks to reduce the cost of context-switching, to gently encourage

students to begin with example writing, and to eliminate the dependency between

editing environment and feedback.

7.2.1 Reducing the cost of context switching.

To reduce the cost of context-switching, Examplarβ implements a tabbed, multi-

file editor, presenting buffers for example-writing/testing (tests.arr), for im-

plementation (code.arr), and a third buffer for any dependencies of both code

and tests (common.arr). Examplarβ does not provide a general-purpose multi-file

editor; rather, each Examplarβ instance is limited to loading these (up-to) three
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chaff Oct 9, 2019

wheat Oct 9, 2019

dummy-impl.arr Aug 28, 2019

median-code.arr Sep 21, 2020

median-common.arr Nov 19, 2019

median-tests.arr Aug 27, 2019

shares.txt Feb 5, 2020

Name Last modi�ed

median DOWNLOAD ALL

Drive Sign in

Figure 13: TODO: Caption

files associated with each assignment. These files are loaded automatically upon

opening Examplarβ for an assignment.

7.2.2 Encouraging students to begin with example-writing.

In the CPO-and-Examplarα workflow, the options of beginning with example-

writing or implementation are presented with equal weight: the assignment

handouts merely present students with two hyperlinks to starter files (tests.arr

in Examplarα, and code.arr in CPO), for which we possess little control over

which students will click first. With an assignment-aware, multi-file editor we

have the opportunity present students with a single link—to Examplarβ—and

then manipulate the user interface of Examplarβ to give preference towards

beginning with example writing.

Examplarβ hides the code.arr file until students click a Begin Implementation

button, pictured in fig. 15. The button is replaced by a code.arr tab thereafter.

And, regardless of whether the student has previously clicked Begin Implemen-

tation, the tests.arr file remains always the initially displayed file each time

the IDE is opened.

7.2.3 Making feedback independent from environment.

As a consequence of providing a multi-file editing environment, we must resolve:

1. What does it mean to click Run?

2. What does the REPL do?
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To eliminate the dependency between open file and feedback provided upon run,

the answers to these questions should be uniform, independent of which file is

visible at the instant Run is clicked or an expression is executed in the REPL.

That is, a student working on their code.arr file should not need to remember to

switch to their tests.arr file before clicking Run to receive feedback about the

quality of their implementation.

Figure 14 illustrates the Examplarβ’s evaluation model. Regardless of which

file is actively visible in the editor, Examplarβ uses the students’ tests.arr

file as the basis of all execution. Assignment template files are prepared such

that the code.arr file provides all of its bindings to dependents (i.e., provide *),

and that the tests.arr file includes all bindings from code.arr (i.e., include

my-gdrive("code.arr")).

As with Examplarα, Examplarβ begins by executing the students’ test suite

against each of the wheat implementations. While the wheats are sequentially

injected, Examplarβ tallies which, if any, of the students’ tests have failed (and

are thus invalid). If any invalid tests are present after wheat execution completes,

those invalid tests are reported to the student without revealing why the tests

failed (pictured in fig. 15) and thoroughness is not subsequently assessed.

If a wheat fails because an unexpected error was encountered in a check block,

the invalidity is reported (as in fig. 16) and the further execution of wheats ceases.

Next, if all tests are valid, Examplarβ then assesses the thoroughness of the

suite by running its tests against each chaff. As shown in fig. 17, chaffs are

represented with bug icons, which are shaded blue when the chaff is caught;

mousing over the chaffs highlights the tests that rejected it.

As with Examplarα, Examplarβ aims to discourage students from using the

REPL to discover the correct output of functions. If the student has yet to click

Begin Implementation, Examplarβ next executes the students’ test suite against

a “dummy implementation”—a wheat in which every function body has been

stubbed out with raise(’output hidden’). Executions of the function-under-test

in the REPL consequently fail with an “output hidden” error message, as shown in

fig. 18. Whereas Examplarα disabled the REPL entirely, this dummy impl allows

Examplarβ to provide a REPL prior to the availability of the student-authored

implementation.

Alternatively, if the student has begun their implementation, Examplarβ skips

the dummy impl and instead assesses the student’s implementation with their

tests.arr suite. Examplarβ displays these results adjacent to the validity–

thoroughness feedback of tests.arr, as pictured in fig. 19. If the student has

written implementation-specific tests in their code.arr file, these results are ac-

companied by a message that the validity and throughness of these tests are

unknown.
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Run

Run tests

against wheats

Are all

tests valid?

Run tests

against chaffs

Has

student

begun

implemen-

tation?

Run dummy impl.

Report validity

and thoroughness.
Report validity.

Report validity,

thoroughness

and test results.

Run student’s

test on their own

implementation

yes

yes

no

no

no

Figure 14: FILL
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include my-gdrive("median-code.arr")
include my-gdrive("median-common.arr")
# DO NOT CHANGE ANYTHING ABOVE THIS LINE

check:
  median([list: 1]) is 1
  median([list: 1, 2]) is 1.5

  median([list:]) is 0

  median([list: 1, 3, 2]) is 2
  median([list: 0, 0, 1, 2, 3]) is 1
end

1
2
3
4
5 ▾
6 ▾
7 ▾
8
9 ▾
10
11 ▾
12 ▾
13

📄median-tests.arr

THOROUGHNESS UNKNOWN

These tests do not match the behavior described by the assignment:

›››

INCORRECT

median([list:]) is 0  9
definitions://:8:2-8:22

▾ ▾ File + Begin Implementation📄median-common.arr 📄median-tests.arr Stop▾Run

Figure 15: While the wheats are sequentially executed, Examplarβ tallies which tests

failed (and are thus invalid). If any invalid tests are detected, the invalid

tests are reported to the student (without revealing why the tests failed), and

thoroughness is not subsequently assessed.

include my-gdrive("median-code.arr")
include my-gdrive("median-common.arr")
# DO NOT CHANGE ANYTHING ABOVE THIS LINE

check:
  median([list: 1]) is 1
  median([list: 1, 2]) is 1.5

  raise("Error!")
end

check:
  median([list: 1, 3, 2]) is 2
  median([list: 0, 0, 1, 2, 3]) is 1
end

1
2
3
4
5 ▾
6 ▾
7 ▾
8
9
10
11
12 ▾
13 ▾
14 ▾
15

📄median-tests.arr

ERROR ENCOUNTERED

A check block encountered an error.

1 blocks errored. Hide Results

INVALID

check-block-2
All 2 tests in this block passed.

Show Details

check-block-1
An unexpected error halted the check-block before Pyret was finished with it. Some
tests may not have run.

Show Details

"Error!"

(Show program evaluation trace...)

▾ ▾ File + Begin Implementation📄median-common.arr 📄median-tests.arr Stop▾Run

Figure 16: If an unexpected error halts any check blocks in the tests file from executing,

the execution of wheats ceases and the invalidity is reported.

include my-gdrive("median-code.arr")
include my-gdrive("median-common.arr")
# DO NOT CHANGE ANYTHING ABOVE THIS LINE

check:
  median([list: 1]) is 1
  median([list: 1, 2]) is 1.5
  median([list: 1, 3, 2]) is 2
  median([list: 0, 0, 1, 2, 3]) is 1
end

1
2
3
4
5 ▾
6 ▾
7 ▾
8 ▾
9 ▾
10
11

📄median-tests.arr

🐛 🐛 🐛

These tests are valid and consistent with the assignment handout. They

caught 4 of 4 sample buggy programs. Add more test cases to improve this

test suite's thoroughness.

›››

VALID 🐛

▾ ▾ File + Begin Implementation📄median-common.arr 📄median-tests.arr Stop▾Run

Figure 17: If all tests are valid, Examplarβ then assesses the thoroughness of the suite

by running its tests against each chaff. In Examplarβ’s feedback, chaffs are

represented with bug icons, which are shaded blue when the chaff is caught.

Mousing over the chaffs highlights the tests that rejected it.
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include my-gdrive("median-code.arr")
include my-gdrive("median-common.arr")
# DO NOT CHANGE ANYTHING ABOVE THIS LINE

check:
  median([list: ]) is 0
end

1
2
3
4
5 ▾
6 ▾
7

📄median-tests.arr

These tests are valid and consistent with the assignment handout. They caught 0 of 4
sample buggy programs. Add more test cases to improve this test suite's
thoroughness.

›››

VALID 🐛 🐛 🐛 🐛

"output hidden"

(Show program evaluation trace...)

median([list: ])

▾ ▾ File + Begin Implementation📄median-common.arr 📄median-tests.arr Stop▾Run

Figure 18: Examplarβ discourages using the REPL discover the correct output of functions.

Prior to the clicking of Begin Implementation, REPL executions occur in the

context of a “dummy impl”—a wheat in which every function body has been

stubbed out with raise(’output hidden’).

A
Figure 19: FILL. Screenshot of feedback after implementation has been begun.
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W I L L S T U D E N T S T E S T W I T H O U T C O E R C I O N ? 1

In this chapter, we design a novel measure to assess students’ adherence to

examples-first development. We apply these measures to students who used

Examplarβ in a semester-long accelerated introductory computer science course,

and find high voluntary adherence, especially relative to the literature’s low

expectations.

8.1 pedagogic context

We assess the submissions of roughly sixty students in the Fall 2019 offering of

CS-AccInt. This section describes the salient qualities of the course; the course,

its assignments and the availability of executable example feedback are described

more fully in chapter 5.

demographics The enrollees were mostly first-year students, many of whom

had prior computing experience; all had to pass a set of programming exercises

to gain entry. Enrollment declined slightly over the course of the semester: 64

students submitted the first assignment; 59 submitted the final assignment.

pedagogy Students were encouraged, but not required, to follow the Design

Recipe—unless they sought help, at which point course staff would expect to see

all the steps and help with the earliest incomplete one.

8.1.1 Assignment Structure

The course was project-oriented, featuring 17 programming projects.2 For each of

these assignments, students were required to submit a code file containing their

implementation, a tests file containing their test suite, and a common file. The

1 This chapter adapts content previously published by the author in Will Students Write Tests Early
Without Coercion? [44].

2 http://cs19.cs.brown.edu/2019/assignments.html

http://cs19.cs.brown.edu/2019/assignments.html
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common file was a shared dependency of both the tests and code file and provided

a place for course staff to provide common definitions, and for students to write

definitions useful to both their tests and code files (e.g., a helper function).

grading As with other offerings of CS-AccInt, students’ final test suites

were primarily graded on the basis of their validity and thoroughness.

8.2 prior art

Kazerouni et al. [55] propose a family of metrics to assess the balance and ordering

of students’ testing efforts and implementation efforts of students writing Java. In

these metrics, “effort” is quantified by the number of line-level changes between

file-saves (as measured by git diff), and is reported at three levels of granularity:

project, work-session, and method.

Unfortunately, line-based metrics are inherently sensitive to syntactic quirks.

Minor stylistic preferences between students may be reflected as substantial

differences in effort. For instance, where one student might write:

let foo = if a { b } else { c };

...another might, equivalently, write:

let foo;

if a {

foo = b;

} else {

foo = c;

}

It seems unlikely that the latter takes six times as much effort to write as the

former.

Stylistic differences between students aside, line-based metrics may also mis-

represent an individual student’s balance of work between testing and implemen-

tation. In JUnit (the testing framework used by students in Kazerouni et al.’s

work), the syntactic forms associated with implementation work are very similar

to those associated with tests. However, some languages (like Pyret, which we

use) have concise testing syntax, making “lines” incomparable.

Buffardi & Edwards [56] assessed students’ adherence to test-driven develop-

ment by computing each student’s test coverage (against their own implemen-

tation) averaged across their submissions to an external automated assessment

system. Unfortunately, if submitting to the automated assessment system is

tedious, students may leave their IDE to do so only infrequently–this interval of

observation is thus potentially too infrequent to compose an adequate picture of

a student’s incremental progress.
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8.3 discretizing effort

To assess students’ testing and implementation efforts over time, we must define

both an interval of observation, and a unit of effort. We derive both of these from

clicks of the Run button.

The intervals created by successive runs provide a meaningful unit of effort:

a programmer clicks Run with the frequency at which they wish to receive

feedback. Whatever amount of testing or implementation a student completes

between two successive runs reflects, by definition, the amount of testing or

implementation effort which that student was comfortable undertaking on their

own before requesting feedback again. In contrast, file saves only reflect the

frequency at which students wish to preserve their work.

To quantify a student’s balance of implementation versus testing effort, we

might simply contrast the number of test-and-run intervals to the number of

implement-and-run intervals. However, if students tend to both implement

and test within the same run-intervals, these intervals will be too coarse to be

informative: test-and-run intervals and implement-and-run intervals will be one-

and-the-same. We posit that students tend to compartmentalize their work inside

run-intervals to either testing or implementation—rarely both.

8.3.1 Compartmentalization of Effort

We therefore begin by asking: do students tend to compartmentalize their work-
between-runs to one of either testing or implementation? Yes. To produce this
answer, we instrumented our editor to track the files modified within each run
interval, and then counted and compared the number of runs occurring after
each of the eight possible combinations of file modifications:

|{}| = 7111

}
6.45% of runs followed
no modifications

|{code}| = 54026

|{tests}| = 34087

|{common}| = 4148


83.73% of runs followed
modifying one file

|{code, tests}| = 5480

|{code, common}| = 1745

|{tests, common}| = 2191

|{code, tests, common}| = 1403


9.82% of runs followed
modifying multiple files

Run-intervals in which students edited multiple files were rare: among the 98,932
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run-intervals which included edits to students’ text or code files, only 6,883

(6.96%) entailed edits to both.

8.3.2 Effort Across Assignments

How did effort vary between assignments? To assess this, we should not assume

that effort, as measured by sheer number of run-intervals, is directly comparable

between students; different students might simply tend to click Run with different

frequency.

We begin by establishing, for each student, baselines which characterizes

their “usual” number of testing and implementation run-intervals: that student’s

average number of implementation and testing intervals across all assignments,

and the standard deviation of those quantities for each assignment. We then

plot, in fig. 20, each student’s relative quantity of implementation and testing

intervals for each assignment, measured in units of standard deviations from that

student’s mean. (We exclude two assignments for which we failed to log data,

and the three partner assignments.)

The testing and implementation effort involved in each assignment seems

substantially impacted by the character of the assignment. For instance, the

three assignments (Sortacle, Oracle, and MST) in which students implemented

testing oracles (programs that test other programs) uniformly involved fewer-

than-typical implementation and testing intervals. (A possible factor: these

assignments do not have a binary notion of correctness, and thus integrated

validity–thoroughness feedback was not available for them.) Another trio of

similar assignments, TweeSearch1, TweeSearch2, and TweeSearch3, involved

similar distributions of effort.

8.4 examples-first adherence

8.4.1 When do students click Begin Implementation?

Oftentimes immediately. Of 703 logged run sequences in which students clicked

Begin Implementation,3 363 (51.64%) clicked Begin Implementation before

clicking Run for the first time. Of these, 165 (45.45%) actually edited their code

file within that same initial run-interval. This suggests that about half of students

who clicked Begin Implementation immediately did not necessarily do so to

begin their implementation.

3 There were 4 logged sequences in which students never clicked Begin Implementation. Three of

these sequences occurred on assignments completed with a partner. We presume that, in these cases,

the partner did the implementation work.
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Without a population to compare to, we cannot say with any certainty that

hiding the code file behind a Begin Implementation button swayed students

towards initial testing. Nonetheless, we are encouraged by these data. We

anticipated that most students would reflexively click Begin Implementation

immediately, yet about half of students did not. Of those who did, about half

did not actually edit their implementation within that run-interval. This suggests

that many students may be clicking Begin Implementation just to survey the

initial contents of the code file.

These data point to a possible design improvement: if students wish to be

able to see the code file, make its contents initially visible but un-editable (until

students click Begin Implementation).

8.4.2 How thoroughly do students test prior to their implementation efforts?

A student who adheres to an examples-first programming methodology will

develop interesting examples prior to their implementation efforts. The exam-

ples must be interesting, because uninteresting assertions do not probe one’s

understanding of the problem. This example-writing must occur prior to im-

plementation, because writing input–output assertions after implementation is

merely testing—tests confirm implementation correctness; examples anticipate it.

Consequently, a good metric of examples-first adherence should:

• Evaluate the quality of examples—not the quantity: the measure should not

reward uninteresting assertions, and should be unaffected by the volume of

edits to the tests file.

• Reward a student’s authorship of interesting examples prior to implementa-

tion: interesting examples written after implementation contribute less to

problem understanding.

• Not penalize students for using tests to review their implementation efforts:

modifications to tests after implementation efforts should not contribute

negatively.

These properties are satisfied by the mean implementation-interval thoroughness

(miit, for short): the mean of the peak thoroughness achieved prior to each

implementation interval. Concretely, consider this (synthetic) sequence of run-

intervals: [
1/5

� ,
2/5

� ,
2/5

� ,
2/5

� , �
� ,

2/5
� ,

3/5
� ,

3/5
� ,

4/5
� ,

5/5
�

]
The fractions denote the thoroughness feedback resulting from that run, and

� denotes that the run resulted in an error; � denotes modifications to tests,
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and � denotes modifications to code. Now, consider only the impl(ementation)-

intervals: [
2/5

� , �
� ,

2/5
� ,

3/5
�

]
This student completed 3 impl-intervals after achieving a peak thoroughness

of 2/5, and one more after achieving a peak thoroughness of 3/5. Their miit is

therefore (2/5× 3+ 3/5× 1)/4 = 0.45.

We use the peak thoroughness achieved prior to each implementation interval

(as opposed to the last thoroughness achieved) because where thoroughness

declines, it is usually because the student has written a very large test suite and

has commented most or all of it out to either focus on a particular test result, or

to temporarily hasten their edit-and-run cycle.

Figure 21 visualizes students’ miit for each of the non-partner assignments with

validity–thoroughness feedback. (We exclude the partner assignments, because

we cannot always combine the logs of cooperating students into a single consistent

timeline of work.) We hoped that providing students with integrated feedback

on their examples would guide them to achieve some level of thoroughness prior

to their implementation efforts. However, mindful of the frustration that ensues

when students are unable to catch all the buggy implementations, the instructor

told them to try to catch “most of them” but move on once they had done so

instead of getting bogged down. Indeed, students typically voluntarily achieved a

moderate level of thoroughness before the bulk of their implementation work:

the miit of the median student ranged from 2/5 to 5/6. Only a handful of students

on each assignment (six, on average) did not achieve any thoroughness before

the bulk of their implementation work.

8.5 limitations

The primary contribution of this chapter is a novel metric, miit, for assessing

how “test first” students are; its secondary contribution is the application of these

metrics to analyze approximately 700 editing sequences produced by students.

Neither of these contributions are without limitations.

limitations of metric This metric is sensitive to chaff selection. This

metric is subject to a ceiling effect if the chaffs are too easy to catch. Conversely,

it is subject to a floor effect if the chaffs are too difficult to catch. How this

metric should be interpreted is highly dependent on how chaffs are selected. For

instance, if the chaffs comprise of subtly buggy implementations, a student’s

miit will reflect how carefully they tested for subtle bugs before the bulk of their

implementation work. As we do not consider this to be an important aspect of
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problem understanding, it was important that our chaffs did not include subtly

buggy implementations.

limitations of application We did not observe in our students many

of the bleak results logged by prior work: we found that most students did not

begin their implementation work immediately, and that the vast majority wrote

moderately thorough examples before their implementation efforts. However,

absent further study, we cannot causally link our IDE modifications, specifically,

to our positive results. Consider, for instance:

• Examples-first development is less rigid than test-driven development

(which prescribes a strict interleaving of testing and implementation) and

thus perhaps easier to adhere to.

• Pyret has a very lightweight, native syntax for test cases.

• The functions implemented by students are “pure”, and thus more easily

testable than if they involved side-effects.

Still, our work serves as a preliminary (positive) assessment of students’ self-

regulation abilities, as an example of how researchers might consider whether

IDE disaffordances have warped student behavior, and as a toolbox for future

analyses of students’ example-writing behavior.
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W H E N I S E X A M P L A R I N S U F F I C I E N T ? 1

As we discuss in chapter 4, researchers have adopted a variety of strategies for

the purpose of getting students to understand problems before starting to write

solutions. Several of these amount to having students solve examples of expected

behavior (e.g., in the form of unit tests) before starting to code. Research also

shows [21, 22] that these sorts of methodological guard-rails are quite successful.

However, unlike these approaches, Examplarα and Examplarβ do not enforce a

particular work-flow onto students, nor did we impose a particular work-flow

in our classroom deployments of these tools: usage of Examplarα was explicitly

optional and Examplarβ’s executable example feedback could be ignored or

silenced through a variety of means, including a “skip tests” setting! Rather, we

present Examplar to our students as a kind of teaching assistant (ta). This ta

has a very limited interface: it can only answer questions about the input–output

behavior described by the problem specification, and it only expresses its answer

in terms of wheat-passing and chaff-catching. However, it is always present,

responds immediately, and is infallible.2 So, when students have questions about

the problem specification, we urge them to “ask Examplar first”. What impact,

then, does Examplar have on student help-seeking?

Specifically, given the presence of this infallible oracle of (un)specified behavior,

we are interested in learning:

• What questions do students still have left about (un)specified behavior?

• What is the influence of automatic, on-demand feedback about (un)specified behavior

in these questions?

To answer these questions, we conducted an exploratory evaluation of these

issues in the context of a post-secondary CS course. We manually reviewed the

1 This chapter adapts content previously published by the author in Reading Between the Lines: Student
Help-Seeking for (Un)Specified Behaviors [24].

2 This claim needs clarification. We mean this in two ways. First, human ta staff sometimes provide

incorrect or contradictory information, whereas all students run the same Examplar. Second, we

stipulate that the behavior of the wheats is definitional, i.e., so long as student work is consistent with

the wheats, we will accept that behavior as correct.
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1,247 assignment-related student posts in the online help-forum of this course,

filtering down to a set of 298 questions relating to the specified input–output

behavior of assignments. We iteratively reviewed these postings, noting whether

they related to specified or unspecified behavior, related to the input–output of

functions, mentioned IDE feedback, and other noteworthy themes. We identify a

number of intriguing pathologies: students asked questions that could have been

answered with automated feedback, misinterpreted feedback, developed faulty

mental models of the feedback mechanism, and possessed faulty preconceptions

about assignment specifications. These pathologies suggest faults in both our

pedagogy and the design of Examplar.

9.1 related work

Given the importance of problem understanding, this paper examines situations

where Examplar-style automation is not enough. Our closest related work is other

projects that have examined student help-seeking. While student help-seeking is a

longstanding area of inquiry in education research [57], research into computing

students’ help-seeking on course forums is comparatively nascent.

Marwan et al. [58] assess the unproductive help-seeking behaviors of students

working in a programming environment that provides on-demand hints. Similarly,

prior research on Examplar has assessed students’ usage patterns of the tool. In

contrast, our work evaluates help-seeking outside of the programming environment,

and the subject matter of the help students sought.

Vellukunnel et al. [59] evaluated forum posts from 395 students enrolled in CS2

courses across two universities. The researchers manually labeled work-related

posts by quality and content, and found that some categories positively correlated

with grades. However, they do not offer detailed insight into the nature of the

content-clarification posts, which is our sole focus here.

We focus on forum posts but ignore help sought in ta hours. We chose to

not monitor these hours because students might find that invasive and become

reluctant to seek help. Ren et al. [54] studied ta use through a non-intrusive but

lightweight mechanism. The trade-off is that their instrument cannot provide

more information into our question, and they anyway find that relatively few

questions about input–output behavior are asked during hours.

We are also laser-focused on a particular kind of help-seeking: questions

relating to the input–output behavior of the problem. We are not aware of much

literature on this particular topic. Ren et al. [54] observe that a cohort of students

trained in the Design Recipe [6] frequently ask questions about the earliest step

in the Design Recipe (which is focused on problem reinterpretation), and suggest

that this “shows that TAs helped students with understanding the problem, not
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only focusing on the end products.” However, the second and third steps of the

Design Recipe also focus on problem reinterpretation, and TAs were seldom asked

about these steps. Much of the literature on programming problem solving finds

that students may get entrenched in problem misunderstandings without realizing

it [2, 4, 3], and thus, presumably, cannot seek help for those misunderstandings.

Examplar bears some resemblance to intelligent tutoring systems [60]: unlike

a “normal” development environment, Examplar has domain knowledge of

the assignment being solved by the student and can alert students to their

misconceptions. In this work, we introduce Examplar to students as an alternative

to soliciting help from course staff: a student who formulates a question about a

problem’s input–output behavior can, in principle, pose that question as a test

case to Examplar—rather than to course staff—and receive an immediate answer.

However, Examplar is not a cognitive tutoring system [61]; it is purely reactive to

students’ inputs, and does not adapt to students’ learning progressions.

9.2 pedagogic context

The pedagogic context of this research is the Fall 2020 offering of CS-AccInt. This

section describes the salient qualities of the course; the course, its assignments

and the availability of executable example feedback are described more fully in

chapter 5.

demographics Its enrollment was 114 students, of whom 92 were first-years

and about 20% female.

assignments The Fall 2020 offering of CS-AccInt had 15 programming

projects (and no exams).

In this paper, we focus on 14 of the 15 assignments, because one does not

fit the scope of our analysis: the final assignment, named “24”. In this multi-

stage assignment, students were not given an input–output specification. Rather,

they are presented with a serious of computational word problems to solve.

Henceforth, when we mention the course’s assignments, we will be referring only

to the 14 for which students produced an implementation from an assignment

specification.

grading As with other offerings of CS-AccInt, students’ final test suites

were primarily graded on the basis of their validity and thoroughness.

student help resources The Fall 2020 offering had 15 undergraduate tas

who cumulatively provided 30 hours per week of one-on-one live assistance to
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students, and answered questions posted to an online help forum (as did the

professor). Questions posed to the help forum were, as a rule, only visible to

course staff; students could not see the questions posed by other students. When,

occasionally, course staff changed the visibility of a students’ post to ‘public’, the

identity of that student remained hidden to other students.

Testing feedback—both via Examplar (against a small set of chaffs), and from

the testing auto-grader (against a much larger suite of chaffs)—was provided on

most but not all assignments.

impact of covid-19 The pandemic had several impacts:

• The course was entirely virtual. (Usually, it is conducted in person, with

most students resident on campus.)

• The enrollment was nearly twice normal (due to an unusual configuration

of courses in the department) but with only a 25% increase in course staff.

• The start of the school year for first-year students was moved to Spring

2021, but incoming students were permitted to take one course (for free) in

the Fall. Thus, for most students, this was their only course.

• Normally, students meet with tas in person and value the interaction (often

waiting in long lines to do so). However, ta sessions were also made virtual

(and staggered to handle time zones).

Due to some combination of the above, students posted many more forum

questions than before: 1,602 posts, which (after accounting for class size difference)

is 54% more than in Fall 2019, for largely the same assignments.

9.3 navigating (un)specified behavior

Automated grading demands that students accurately match the behavior de-

scribed by each assignment’s specification. To succeed, students needed to

precisely interpret both the specified and unspecified behaviors of each assign-

ment. As many of our findings (section 9.5) relate to how students responded to

(un)specified behaviors, we briefly review the challenges they pose in this section.

unspecified behavior The unspecified behaviors are those aspects for which

the programmer has discretion over the exact behavior of their program. For

example:

1. A specification of arithmetic mean might only define the behavior over non-

empty lists of numbers, but a particular implementation will do something

(defined exception? 0? -1? division-by-zero?) for empty inputs.
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2. A list can have more than one most-frequent element. The specification of

the mode function may not fully indicate which one(s) should be produced.

A black-box test of unspecified behavior is a kind of invalid test. If an implemen-

tation (say an instructor-provided one) fails against them, that doesn’t make the

implementation wrong! Thus, it is important to identify such tests as invalid.

Examplar does this via multiple wheats (recall section 2.1.3).

resolving invalidity However, what a student should do after being told

a test is invalid is complicated. It may be that the test reflects a misunderstanding

of the specified behavior of the problem, in which case the student should correct

the test. Or, it may be that the test provides an unspecified input (e.g., the mean

of an empty list), in which case the student should remove the test.

Or, most subtly, it may be that the test involves semi-specified behavior, in

which case the student should use property-based testing (pbt) [62]. For instance, a

thorough test suite of the mode should include inputs with multiple modes, but it

should not assert that the output for such inputs is any one value—that would be

an implementation-specific test. Rather, it must check that the output satisfies a

property: that it is a mode of the input list.

pedagogy To prepare students to handle semi-specified behavior, we devote

two assignments, Sortacle and Oracle, entirely to pbt. For these assignments,

students’ sole objective was to produce a testing oracle, a function that consumes

a function purportedly implementing a specification, and produces true if it is a

correct implementation, and false if it is buggy.

We reference the first of these non-traditional assignments, Sortacle, through-

out our findings. In Sortacle, students implemented a predicate that consumes

two lists of Persons (records with a name and an age) and produces true if the second

list is an instance of the first sorted by age; otherwise false. Here, the precise

ordering of Persons with the same age is intentionally left unspecified.

9.4 methods

We began by automatically collecting students’ postings to the assignment-related

categories of the course’s online forum. This collection comprised 1,247 of

the approximately 1,602 postings made across all categories. These assignment-

related posts discussed the behavior of students’ programs, the behavior described

by the assignment, the runtime-complexity of functions, programming language

issues, course procedure, and more. We retained only the posts relating to input–

output behavior of assignments for further examination; i.e., posts that concerned a
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function specified by the assignment handout, and where the source of confusion

could be observed with a test relating that function’s input to its output. This

second criterion included both postings in which the question was phrased

theoretically (“What should X output when given Y?”), and postings where the

question was about the students’ code without mention of the specification (“Why

is this test invalid?”). In all, 298 postings related to the input–output behavior of

an assignment.

Next, we reviewed these input–output-related postings on both a per-assignment

and cross-assignment basis for common (or otherwise notable) phenomena. On

all but Sortacle and Oracle, we additionally attempted to classify whether each

posting was prompted by Examplar, and whether it related to unspecified inputs,

semi-specified outputs, or the specified behavior of the assignment. We consid-

ered a posting to be prompted by Examplar if the student mentioned Examplar

explicitly, included a screenshot of its feedback, or alluded to its feedback (e.g.,

“Why is this test invalid?”). A posting related to unspecified inputs if it concerned

an input outside the domain of the assignment; it related to semi-specified out-

puts if it concerned an input admitting multiple possible outputs; and it related

to the specified behavior of the problem if it concerned a case in which the input

is specified and admits one valid output. We left particularly hard-to-classify

postings—nine, in all—unclassified.

This classification work was mostly performed by one author; inter-rater re-

liability methods are therefore inapplicable. For hard-to-classify postings, this

author sought feedback from the former TAs of the course. The other author of

this work—who was the instructor of the observed course—provided context and

interpretation for the patterns identified by the first author. As this is interpre-

tation innately subjective, we center the presentation of our observations on the

quoted postings of students.

The severity of input–output-related postings varied widely. At one extreme,

course staff merely nudged the student to re-read a portion of the assignment

handout. At the other extreme, the staff needed to make changes to the automated

feedback mechanisms to correct bugs. Regardless of severity, they reflect some of

the self-insurmountable problems encountered by students: ones where the student

either could (or did) not answer their question from the assignment specification

or Examplar.

We pay special attention to the ninth assignment, TweeSearch. It asks students

to implement a search function that consumes a list of “tweets” and a query to

fuzzily search for, and produces a list of tweets sorted by relevance. The exact

output order of equally-relevant tweets is unspecified, so there can be several

valid answers. Examplar will reject as invalid any test that asserts an exact order.

Students were told to treat this like an exam: “without consulting course staff
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except for critical issues (broken links, possible assignment typo, etc.)”. Therefore,

any input–output behavior questions about this assignment would have been

posted as a last resort.

9.5 observations

We now try to answer the research questions posed in the abstract and introduc-

tion. We begin with basic statistics about the kinds of questions asked, then move

on to several observations that we believe may be insightful to researchers and

educators. The 298 postings we reviewed were authored by 90 different students.

The most prolific of these students authored 12 input–output related posts; the

median student authored three.

9.5.1 Distribution of Questions

We begin by examining the distribution of the 230 input–output related questions

students posed across 12 programming assignments (we exclude the 68 postings

relating to Sortacle and Oracle) across several basic axes.

specified or unspecified? There is a big difference between (what a

student believes to be) specified versus unspecified behavior. If the behavior

appears to be specified, a student is more likely to ask why the outcome is

or is not what it is. If it seems unspecified, the student does not know what

should happen at all. We found 106 to be about specified behavior and 110 about

unspecified; a few could not be definitively classified, or included questions of

both kinds.

kinds of unspecified behavior On most assignments, students grappled

with one of two kinds of unspecified behavior: inputs for which no output was

specified, and inputs for which the output was only semi-specified. Among the

110 postings that included questions about unspecified behavior, 58 concerned

unspecified inputs, and 60 concerned semi-specified outputs.

relationship to automated feedback Within the ten assignments for

which students had automated feedback about the validity of their tests, students

posed 169 input–output-related questions; of these 105 mentioned automated

feedback that a test was invalid. Of these 105 questions, 28 concerned specified

behavior, 29 concerned unspecified inputs, and 43 concerned semi-specified

outputs.
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9.5.2 Not Using Examplar’s Feedback

Despite the availability of Examplar, students posed questions that could have

been answered automatically with a test case; e.g.:

g asked...

Do the movement functions in Updater need to be repeatable/stackable?

For questions like the above, we might attribute help-seeking on the course

forum instead of Examplar to a preference for prose. One student, asked why

they had not answered their question using Examplar, clarified that they had

been pen-and-papering out examples and had not yet realized validity feedback

was available.

Other cases are more puzzling. In several instances, students asked the TAs

whether a particular test case was valid or not:

g asked...

Should we be allowed to update multiple nodes or navigate around the tree

without turning the cursor back into a tree between updates. For example,

would a test like this be consistent with the problem specification?

[test case code elided]

This question could have been answered by running this test case in Examplar,

but the student does not mention having tried it. Is it possible that they did not

know Examplar’s validity feedback corresponds to “consistent with the problem

specification”? Or, could it be that students tended to prefer interacting with

course staff over automated tooling? For further examples of this pathology, see

the student postings reprinted in section 9.5.6.

9.5.3 Input Bias

When faced with feedback that a test was invalid, students needed to determine

whether the invalidity was caused by an unspecified input, or an over-constrained

assertion on semi-specified output. Multiple students mis-attributed the invalidity

of their over-constrained tests to unspecified inputs.

Recall that in TweeSearch, testing for a particular output order of equally-

relevant search results is invalid. However, at least six students misattributed the

cause; e.g.:
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g asked...

I just wanted to clarify: can we assume that two tweets in our list will never

have the same overlap with a search tweet? I think the answer is yes since

Examplar errors no matter the order of the outputted list, but I was unsure

because it doesn’t error if you check the length of the outputted list.

Regardless, I just wanted to clarify since I don’t think it’s specified in the

assignment page.

This student misattributed their test invalidity to the input, and thus asks if

they can (incorrectly) assume that inputs that admit equally-relevant results are

invalid.

Such misattributions are worrying. They might push students to delete their

over-constrained tests, rather than to reformulate them to be property-based.

Much worse, students may end up implementing an incorrect solution that is

brittle in the face of valid inputs that they have incorrectly ruled out.

This posting is notable in that the student correctly intuits the method for

distinguishing between invalid inputs and semi-specified outputs: use pbt. Other

students were not so fortunate, and even this student only presents this as a

passing observation, not recognizing that this is in fact what they are expected to

do. This, at least, suggests a pedagogic flaw in the class.

9.5.4 Failure to Transfer

Even though students had completely two assignments devoted to pbt, on post-

ings for later assignments with semi-specified outputs, course staff frequently

had to prompt students to remember how they had handled this situation in the past.

This happened both soon after those assignments, and late in the semester.

On TweeSearch, which came two weeks after the latter pbt assignment, stu-

dents needed to adapt the property-based testing for sortedness that they devel-

oped in Sortacle. Unfortunately, TweeSearch stumped a significant proportion

of students: 23 of the 36 input–output-related posts on this assignment con-

cerned testing sortedness. Several students drew a partial connection to pbt,

but struggled to find a middle-ground between exact-value testing and pbt; for

instance:
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g asked...

If we have tweets that have the same overlap coefficient w/ respect to the new

tweet, should our tests allow for any ordering of these overlap coefficients, or is

there a secondary characteristic of the tweets that we should be sorting by

after the overlap coefficient? Based on what Examplar seems to say, these

tests are not valid at all if I’m checking order. However, if I just check whether

the resulting lists have the same elements in them, Examplar returns the

expected result. Although this means of testing works, this is not necessarily

ideal considering it is not necessarily true that order is ENTIRELY irrelevant.

This student has clearly read the specification closely, identified that exact-value

testing is inappropriate, and succeeded with weak pbt—but they were unable to

commit to this strategy. (The post in section 9.5.3 also shows this.)

These failures are worrisome, and suggest difficulties that students face with

testing against properties rather than concrete outputs. Unfortunately, there is

little research on this topic; the only paper we know of [63] reports fairly positive

outcomes, and does not contain the kind of fine-grained observations we are

making. This clearly identifies the need for more detailed future work.

9.5.5 Not Understanding Examplar

Some students’ postings indicated that they did not have a clear execution model

for the validity feedback produced by Examplar, even late into the semester. This

confusion was often evident in their response to such feedback (e.g., individually

testing every possible output of a semi-specified problem), but was sometimes

explicit. We saw three main categories of confusion about Examplar’s model.

what is checked? As an example, on ContinuedFractions, the eighth

programming project of the course, one student asked:

g asked...

So when I was creating tests in examplar, I tried testing threshold as followed

below but received “These tests do not match the behavior described by the

assignment” [...] I don’t know if it is my implementation or something to do

with an invalid test. It would be great if someone cleared me on where I seem

to be going wrong.

Feedback that tests are invalid can only indicate an issue with tests. Because

the student’s tests are run against instructor implementations, and the tests can

be run before the student’s implementation has even begun, invalidity cannot
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possibly be a statement about the student’s implementation. We unfortunately see

similar misunderstandings late into the semester too.

mis-experiments Of the 23 postings to TweeSearch about its semi-specified

output behavior, 16 posts explained that they had individually tested every

possible ordering—all of which were (correctly) rejected as invalid by Examplar.

Reactions included bug reports; e.g.:

g asked...

I know I’m supposed to treat TweeSearch like an exam, but I think there’s

something broken. The following checks all fail, which is interesting because

they seem to cover every single possible output. Am I missing something, or is

the given implementation broken?

Another student mixed pbt (good!) with exact-value tests (which would never

work) of every possible combination of outputs:

g asked...

I cannot figure out the order in the case that two tweets have the same

similarity scores, and I assumed you wouldn’t tell me, so I just tried testing it

out. Is the highlighted part not a logical paradox here?

The comment about the “logical paradox” reflects a very interesting miscon-

ception about the nature of testing and problem definition.

reifying the model Recall that Examplarα reported the number of wheats

it uses to check validity, and Examplarβ “simplified” its interface by removing

this information. Sadly, several postings suggest that hiding this detail of the

execution model may have been counterproductive; e.g.:

g asked...

If our tests are only being tested against one wheat, then something weird is

happening. If there are deliberately multiple wheats to ensure that our tests

are order-agnostic, then it’d be good to know. Does that mean we have to

write our own predicate “equality” function that ignores orders for tweets with

the same score?

This student had formed a perfect conception of the situation and, had they

been given the wheat count, they would have come to exactly the right under-

standing without needing to ask.
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9.5.6 Specification Preconceptions

Postings regarding the specified behavior of functions often suggested the student

carried preconceptions about the intended behavior of the assignment.

imagined functionality Students wondered whether they needed to

provide functionality not mentioned by the assignment specification. For instance,

the second assignment asked students to implement a recommendation engine

by analyzing frequently-paired books. Two students wondered about the case-

sensitivity of the engine; e.g.:

g asked...

When matching titles, do we assume they match exactly, or should we take

into account capitalization? Should we also take other words into account?

For example, if I recommend “The Lightning Thief by Rick Riordan”, does the

function need to be able to tell that it’s the same thing as “The Lightning

Thief”, “lightning thief”, “the lightning thief”, “Lightning Thief”, etc?

The assignment specification does not suggest that the recommender should do

anything other than check exact matches, but such functionality would be useful

in a real-world version of the assignment. Similarly, on the first assignment,

which implements a very simple text similarity checker:

g asked...

Should the program consider punctuation when evaluating overlap?

imagined constraints On Sortacle, in addition to building the checker,

students were required to read and reflect on the article “Falsehoods Programmers

Believe About Names” [64]. Nonetheless, among the 43 input–output-related

questions posed by students, more than a dozen concerned the well-formedness

of names and ages; e.g.:

g asked...

Does a name have to start with a capitalized letter? Does a name have to

contain a first and a last name? Does it matter if the randomly generated

string doesn’t make actual sense in terms of English? (e.g. Do “Shbs”,

“Xusnhy” count as names...?)

g asked...

Is it appropriate for our names to have symbols in them?
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g asked...

Should we generate names to be a single uppercase letter followed by lowercase

letters?

g asked...

when we generate random names should we assume that the strings should

consist of only upper and lowercase english letters?

g asked...

Can the name of a person be literally any String? It’s not specified in the

assignment. For instance, can Strings like “@#$&@ˆ% 1112” or “Hello World”

or even “X ÆA-12” constitute names?

All of these were effectively answered by the handout (which says they are all

valid names, and hence invalid constraints).

This tendency extended, to a lesser extent, to more abstract assignments. On

Updater, two groups of students wondered about validity constraints on trees;

e.g., one wrote:

g asked...

For a single node, is it guaranteed that its children will have distinct values?

There was nothing in the specification suggesting that the data carried by

sibling nodes ought to be unique.

mathematical language In an assignment where students implemented

a palindrome-checker on strings, three students wondered if the empty string

ought to be considered palindromic. As one student explained:

g asked...

Would an empty string be a palindrome? I’m tempted to say yes, for the same

sort of reason that an empty set is a subset of every set; but there’s also

something about that that offends against the ordinary English conception of a

palindrome.

9.5.7 Expanding the Specification

Whether through prior conditioning or other reasons, many students seem to

not entirely understand, or perhaps even believe, that the assignment constitutes
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a kind of contract, and that the course staff will not demand, and often do not

even care about, aspects not specified. For instance, on a problem to compute text

overlap, the function was only specified on non-empty lists (since the formula

does not make sense otherwise). Nonetheless, students wanted to know the

“right” thing to do for empty inputs, and asked several questions along the lines

of:

g asked...

Should we account for if the inputted lists are empty in overlap? If so, would

overlap be 0 or a message?

Theoretically, unspecified inputs ought to be a reduction of work for students:

their use helps keep specifications shorter, and they reduce the surface area of

functionality that students must implement and test. In practice, however, these

postings suggest that unspecified inputs may be a source of anxiety, at least early

in the semester.

9.5.8 Tooling Pain Points

We identified three pain-points in the tooling around Examplar:

error suppression Upon a click of Run, Examplar first executes the stu-

dents’ tests against a set of correct implementations. Only if these tests are

valid does it then run them against the students’ implementation. If there are

any invalid tests, those tests are highlighted, but information about why they

are invalid is suppressed to discourage students from merely copy-pasting the

“correct” output result into their test suite.

In at least one instance, this measure hid valuable information from the student:

they had, incorrectly, written g.names instead of g.names() in a test case. The

resulting error message was suppressed, and the student hypothesized that an

unrelated issue was to blame.

undetectable invalidity On JoinLists, students implement a function

for sorting an input list according to a given comparator function. The specifi-

cation dictated that this comparator must define a total order, but it is generally

impossible to detect whether a purported comparator satisfies this property. As

such, students were able to write invalid tests that were marked as valid.
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no lightweight relational testing JoinLists also illustrates a problem

we noticed in multiple places. In that assignment, the reduce function’s output is

only semi-specified. One student asked:

g asked...

So I wonder, is there a way for us to do something like:

j-reduce(lam(x,y): x - y end,

[join-list:1,2,3]) is 2 or -4

(btw, we know the above example doesn’t work... since we cannot use "or" in

check box...we think)

This student correctly observes that the output is a set. They are hoping the

language would let them write multiple outputs (or -4) just as easily as they

can write one (2). The language does not support that directly, and it requires a

non-trivial change to the test case for the student to specify the set of acceptable

outputs instead.

9.6 limitations

threats to internal validity Our view of student help-seeking was

limited to interactions in the online course forum; we do not know what questions

students asked course staff in office hours. Our classifications of postings (e.g.,

of whether questions concerned unspecified behavior) should be treated with

caution: they were mostly performed by one author, and some hard-to-classify

postings remained unclassified. Our interpretations of postings are best-guesses,

informed by our experience with the course. Although these guesses will inform

our future interventions and research, they are, at this time, untested hypotheses.

threats to external validity In this work, we report on a number of

challenges that our students encountered which we had not anticipated. Different

student populations, especially those working under different conditions (e.g.,

differences in assignments, instruction, help availability, grading incentives, pan-

demics, etc.), would likely encounter different challenges, and other instructors

would probably vary in the pathologies that they failed to anticipate or found

notable. We therefore caution readers against drawing broad conclusions about

novice programmers from our observations.

This work only examines problems that, while sophisticated, for the most part:

do not involve state or other side-effects; have agreed-upon data structures; and

have a clear goal. Removing each of these makes “automated taing” much harder

or even impossible. Stateful interfaces will almost certainly make the writing of
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unit tests far harder. If the assignment itself requires the design of data structures

(like our Updater does), then the data structure must be abstracted into interfaces

that can be tested against. Finally, entirely open-ended problems (e.g., asking

students to create a game of their choice) are not amenable to this method at all,

which assumes there is some objective specification that can be checked.

9.7 discussion

To some extent, this paper validates the use of tools like Examplar. Examplar’s

intent is to serve as a guardrail for students, alerting them to their problem

misconceptions before final grading. Many of these instances we cannot see from

our current dataset, but the 105 postings that cited Examplar’s feedback reflect

a lower-bound for the number of instances where a student was stopped from

veering off-track. This suggests the value of “automated tas” like Examplar.

However, postings also suggest that many students did not know how to

respond to feedback about invalidity. We observe a time-consuming anti-pattern

too, reminiscent of Prather et al.’s [3] observations of students consumed by

automated feedback on their implementations: students reacting to invalidity

by exhaustively testing every possible output of semi-specified functions. These

students were not as adequately prepared for testing unspecified behavior by

Sortacle and Oracle (the course’s testing-focused assignments) as we had

hoped. And, at least one student who did understand Examplar’s assessment

model for unspecified behavior was hampered by the tool’s opaque presentation

of feedback (“If there are deliberately multiple wheats [...] it’d be good to

know.”). Future research must address how to help students understand respond

productively to invalidity, especially that caused by unspecified behavior.

More broadly, problem comprehension seems to demand new skills that are not

very well covered in current curricula or standards. For instance, early examples

and subsequent testing both require good adversarial thinking: a mindset that

is not usually included in definitions of “computational” thinking but is clearly

relevant even from an early stage (not only in areas like security). Yet, the

barriers to employing adversarial thinking may be more social than instructional

or technical: the availability of Examplar did not stop students from posing

questions about the expected input–output behavior of problems (including

questions that used prose to precisely describe illustrative test cases). Future

work should consider the possibility that students prefer the assurances of human

course staff over that of automated feedback.



10

W H E N E L S E D O E S E X A M P L A R W O R K P O O R LY ?

While Examplar proved highly beneficial in the primary context studied (various

offerings of CS-AccInt, in chapters 6, 8 and 9), it is not a cure-all. As discussed

in section 2.2, Examplar’s assessment model substantially limits the scope of

assignments for which wheat–chaff feedback can be supplied. In this chapter, we

consider how the pedagogic context of Examplar may also substantially affect its

utility.

CSCI0111 Computing Foundations: Data (CS-Foundations) is the first course in

a relaxed, three-course introductory sequence. The Spring 2020 offering of the

course featured ten programming projects; the first six in Pyret, and the remaining

four in Python. The second, third, and fourth assignments used Examplarβ.

In Spring 2020, we conducted a think-aloud, A/B study among CS-Foundations

students, in which participants were assigned a programming problem to solve in

20 minutes using the Examplarβ IDE. Among seven participants, four received

wheat–chaff feedback; three did not. The programming problem was followed

by additional time for questions and discussion about Examplar. The primary

goal of this research was to study the differences between students who had

wheat–chaff feedback available to them, and those that did not. Instead, the

study (particularly the discussion following the thinkaloud) revealed a variety

of environmental factors that confounded the study and severely undermined

Examplar’s usefulness for all participants:

10.1 when the run is clicked infrequently.

Examplar provides wheat–chaff feedback upon each click of Run. The usefulness

of the environment hinges on how early and often Run is clicked; if students

seldom click Run, or first click Run late into their development process, they will

seldom get feedback, or only get feedback late into their development process.

This threat to Examplar’s utility was on striking display during in the CS-Foundations

think-aloud. All participants’ first click of “Run” (and thus their first exposure

to wheat–chaff feedback, if available) occurred very late into the development

process: P1 at 15:30, P2 at 19:41, P3 at 7:00, P4 at 14:22, P5 at 15:08, P6 at 15:38,
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and P7 at 15:30. P3’s comparatively early run at seven minutes occurred prior to

the modification of any files, and was used to clear the REPL; their next click of

run occurred at 20:27. P7’s first run at 15:30 was only only to clear the REPL; their

next run came at 21:34. As participants were not told in advanced whether wheat–

chaff feedback would be available, it was not until students’ first non-erroring

Run that they learned whether or not wheat–chaff feedback was available.

This late use of Run was exacerbated by a development style favored informal

testing in the REPL to use of check blocks. P1, P2, and P7 strongly preferred the

REPL to check-block-based testing. P2 used the REPL to confirm their understand-

ing of the support code. P1 and P7 mostly used it to confirm their understanding

of their own helper functions.

10.2 when feedback is misaligned with incentives .

When Examplar’s feedback is misaligned with the grading incentives of the

course, students might feel more frustrated by it than helped.

We anticipated that our CS-Foundations participants, like the students we

studied in CS-AccInt, would positively regard Examplar’s feedback (e.g., see

section 6.5). Indeed, we observed several utterances suggesting that participants

were motivated by chaffs to write more tests:

1. P3: “I have to catch that third buggy.”

2. P5: “[If I had chaffs], I’d be running this test against the correct code, and if

I catch the buggies, I know i’m doing the right thing”

3. P6: “Oh wait! I’m only catching one of three buggy!?”

However, two participants described substantial chaff-related frustrations. P7

described themselves as motivated to test by chaffs, but also deeply frustrated by

them (and testing in general). On the matter of chaffs, they complained about

the opacity of feedback. As a student taking the class for a grade, they felt like

they (and their grade-taking friends) had to catch all chaffs (or they would fail) —

while acknowledging that a TA probably told them it was alright to miss a few

chaffs. They complained at length on the frustration of thinking of nonsensical

(with respect to the real-world context of the problem) edge conditions, but

acknowledged that the chaffs had pushed them to learn to think about educations

far better than they had on the first few assignments.

They also expressed great frustration at hitting testing quantity targets. Their

final words while working on rainfall were:

Oh I caught all three [chaffs]? I would still probably write a bunch of

baloney tests because I feel like they like seeing I tested a bunch, but
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i would be doing that because I wanted to get a good grade in this

class and not for any other reason.

Similarly, remarking on validity and thoroughness feedback, P1 said:

[...] they made a very big deal about how to test how to test rigorously

in the beginning and then it was just general understanding were

supposed to test all this stuff. But there wasn’t really feedback on

tests. And I don’t think there’s a feedback on the homework really,

you just get your grade. And so there’s like points off and I’m not

sure why there are points off. I guess I could go ask.

Indeed, CS-Foundations, unlike CS-AccInt, did not primarily grade students

on the validity and thoroughness of their test suites. In CS-AccInt, students’

final submissions are primarily automatically graded on the correctness of their

code, and the validity and thoroughness of their test suites; Examplar’s feedback

thus provides a glimpse into final grading: The same wheats are used between

Examplar and final grading, and the chaffs used by Examplar are a strict subset of

those used in final grading. Absent this alignment between feedback and grading

methodology, Examplar’s value to students is fairly abstract.

10.3 when the ide is unfamiliar .

The A/B study was confounded by unfamiliarity with the IDE, particularly the

multi-file paradigm. Examplar requires that black-box tests are authored in a

separate file from the problem implementation. In Examplarβ, this separation is

realized as distinct editor tabs. All participants in the CS-Foundations think-

aloud received at least two reminders of this separation: once written in the

problem handout, and once in my verbal summary of the handout. Three

participants nonetheless stumbled, reflexively beginning their implementation in

the tests tab:

1. P1 opened Examplar at 2:30, I gave “two tabs available” reminder, at 3:00

they began writing the ‘rainfall’ skeleton in the tests tab, then switch to

handout to try to find ‘official’ signature, at 3:51 I reminded them that a

function template was available in the code tab and they finally click ‘Begin

Implementation’.

2. At 1:54, P2 began writing the ‘rainfall’ skeleton in the tests tab, I tell them

that template is already present in the tests tab until 19:41, at which point

they hit run for the first time, and get a very gnarly shadowing error—I

explain they are working in the wrong tab. At 21:43, they paste their impl

into the code file without deleting the template.
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3. At 2:25, P4 began writing the ‘rainfall’ skeleton in the tests tab. At 2:49 I

interject and point out a skeleton is already vailable in the code tab, and they

exclaim, “Oh! What do you know! I should read all of this before I start.”

However, they then (3:07) turn back to the handout and start scanning for a

‘rainfall’ template. I clarify explicitly about clicking "Begin Implementation",

and only then do they click it.

Additionally, in discussion, P3 remarked:

This structure of having these two files was never explained to me, so

I like don’t know how it works. I don’t know why they’re in different

tabs.

A pre-participant remarked that they were not used to having template code

already present for them—in contrast to CS-AccInt, the non-Examplar assign-

ments of CS-Foundations do not provide a CPO instance with starter code. A

few participants asked if they needed to copy in the helper function code snippets

from the handout. (They did not.)

10.4 when tests are difficult to write .

Although the perceived value of Examplar’s feedback may incentivize students to

write input–output examples, it does not entirely negate factors that disincentivize

this kind of example-writing. For instance, on CS-AccInt’s FluidImages assign-

ment, formulating new input–output examples requires students to painstakingly

write out image pixel data; perhaps consequently, this assignment garnered the

second-fewest clicks of “Run Tests” of any assignment during the 2018 offering

of CS-AccInt (see fig. 10).

A student may also struggle with writing input–output examples if they have

little experience doing so. In CS-Foundations, students typically implemented

programs to analyze existing, given tables of data, rather than author their input

data. For two participants in the CS-Foundations think-aloud, this was a barrier

to example-writing and programming progress:

1. At 3:00, P7 remarked “my first gut reaction is how do I actually look at that

data I have, because I see that it’s this,” and then moused over the g-drive

import of the support code. I clarified this problem was like Homework 6,

where they wrote functions working over lists, not tables.

2. A 6:53, P3 moused over the g-drive import of the support code and remarked

“let’s remember how to access data from this thing” — perhaps confusing

the support code import with an import of a Google Sheet. A 8:44, when

writing their plan, they included the step “figure out how to get the data
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lol”. At 18:28, they moused over the g-drive import again and remarked

“How do you get the data?”, then exclaimed “Oh, do I just have to do

import as some shit?” At this point, I interjected that the necessary imports

were all in place, to which they responded “But how do I access this list?

[...] In my head, I should have, like, imported-table = blahblahblah”.

In both cases, an expectation that input data was be provided prevented the

student from easily formulating input–output examples or tests.
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C O N C L U S I O N

Providing students with timely feedback of their input–output examples incen-

tivizes them to develop input–output examples, improves the quality of their

test cases, and may improve the quality of their implementations. Realizing

these benefits, however, requires both the selection of an appropriate model for

assessing the quality of examples, and the implementation of the model in a

manner that effectively communicates assessments to students.

The classifier model of test suite assessment (chapter 2), combined with a

concept-oriented approach to chaff development (appendix A) is one approach

with which instructors can provide this feedback. We demonstrated (chapter 6)

the viability of this model with Examplarα (detailed in chapter 3), a development

environment standalone from students’ usual implementation and testing envi-

ronment, which is specialized for writing examples. This IDE cannot be used

for developing or testing one’s implementation (students needed to complete

these tasks in the usual Pyret development environment), and was (after the

first assignment) completely optional for students to use. Nonetheless, virtually

all students used Examplarα extensively on every assignment. The validity of

students’ test suites was drastically better than prior years, and the correctness of

students’ implementations improved slightly (though not significantly).

These findings assured us that Examplarα was, at the very least, non-harmful.

Subsequently, we developed a successor IDE, Examplarβ, which integrated Ex-

amplar’s feedback into an environment in which students could also develop

and test their implementations (chapter 7). This integration, in principle, reduced

the degree of self-regulation required from students to benefit from Examplar’s

feedback. It also gave us further visibility into how students balanced their

example-writing, implementation, and testing efforts. We developed a measure of

examples-first-ness (chapter 8) that instructors using our assessment model can

apply to evaluate how thoroughly their students explore problem specifications

with examples before the bulk of their implementation work. Our preliminary

assessment of editing patterns of CS-AccInt students with this metric indicated

that these students, on their own volition, moderately explored the specification

via examples before the bulk of their implementation work.
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11.1 caveats and consequences

However, Examplar is not a panacea. In chapter 2, we noted that Examplar’s

assessment model renders it useless for certain classes of problems, including

those where “correct” and “buggy” is not a strict binary. In chapter 6, we ob-

served that having a robust test suite does not necessarily translate to a correct

implementation: on an assignment where the allotted days was halved between

2017 and 2018, the quality of students’ test suites was seemingly unaffected by the

abbreviated timeframe, but the quality of their implementations declined precipi-

tously. In chapter 8, we observed that, while Examplarβ effectively forewarned

students of invalidity, students were sometimes unsure of how to interpret that

feedback, and needed to seek additional help from the course staff. And, in

chapter 10, we noted a slew of other pathologies relating to the habits of students

and the circumstances of Examplar’s deployment; e.g., that Examplar cannot

provide feedback until students click Run.

These caveats are not merely theoretical considerations; they are critically

important qualities of both our assessment model and of Examplar that instructors

adopting either must weigh, and they are opportunities for vital future work.

11.1.1 Opportunities In the Assessment Model

For one, the limitations of our assessment model meaningfully constrain constrain

the kinds of assignments it can be used on. In CS-AccInt, these limitations

precluded Examplar’s availability on two assignments early in the course. The

consequences Examplar’s absence were not contained these assignments; this

brief gap in Examplar’s availability eroded students’ trust that Examplar would be

available on future assignments (section 9.5.2)! The limitations of our assessment

model thus poses both practical pedagogic risks and a research opportunity: How

might we help students hone their problem understanding on such assignments?

11.1.2 Opportunities in the Implementation

There is significant room for experimentation in the implementation of our as-

sessment model, too. Our analysis of students’ course forum posts (chapter 9)

uncovered numerous situations in which Examplar’s feedback prompted stu-

dents to pose follow-up questions to course staff, each of which is a research

opportunity: Could different automated feedback have answered this question?
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communicating (in)validity We observed several postings suggesting

uncertainty about how to interpret Examplar’s feedback about invalidity (sec-

tion 9.5.5); e.g.:

g asked...

So when I was creating tests in examplar, I tried testing threshold as followed

below but received “These tests do not match the behavior described by the

assignment” [...] I don’t know if it is my implementation or something to do

with an invalid test. It would be great if someone cleared me on where I seem

to be going wrong.

Cosmetic changes to Examplar’s feedback might have averted this question;

Examplar could have said, directly:

There an issue with your test suite. This test case is invalid, meaning

it might reject even a correct implementation.

However, merely understanding that invalidity feedback indicates a problem

in one’s test suite does not mean that one knows how to respond to that feedback.

How a student should respond to invalidity feedback is complex; there are three

kinds of invalidity, each requiring a distinct response:

1. the invalid test reflects a misunderstanding of the specified behavior of

the problem (e.g., median([1, 1, 4]) is 2), in which case the student should

correct the test, or

2. the invalid test fails to account for the specification allowing multiple, valid

outputs for certain inputs (e.g., mode([1, 2]) is 1), in which case the student

should apply property-based testing techniques, or

3. the invalid test supplies an input for which the output is undefined (e.g.,

median([]) is 0), in which case the student should delete the test.

We encountered numerous postings suggesting that students struggled with these

subtleties (section 9.5.5). Some, for instance, seemed to possess a conceptual

model of invalidity that did not admit for all three possibilities; e.g.:

g asked...

I know I’m supposed to treat TweeSearch like an exam, but I think there’s

something broken. The following checks all fail, which is interesting because

they seem to cover every single possible output. Am I missing something, or is

the given implementation broken?
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Another student, in a similar position, declared Examplar’s feedback to be a

“logical paradox”. What alternative or additional feedback might have helped students

navigate the subtleties of invalidity?

At the very least, we can imagine cosmetic changes to the IDE’s output; e.g.

reporting invalidity with the message:

There an issue with your test suite. This test case is invalid, meaning

it might reject even a correct implementation. To fix this, start by

figuring out why this test case is invalid. Click here to learn more.

Better, yet: the IDE, itself, could automatically apply heuristics to deduce why

a test case is invalid. If, for instance, the wheats communicated to Examplar that

a function was invoked with an out-of-domain input, Examplar could directly

inform the student that their test case had invalidity of the third kind. And if,

for instance, Examplar also checked whether a student’s test case passed some-

but-not-all of the wheats, Examplar could inform the student that their test case

exhibited invalidity of the second kind.

thoroughness without fixation or frustration At best, thorough-

ness feedback provides students with a sense of how confident they should be

that they understand the assignment, and motivates them to develop their confi-

dence through example-writing (e.g., as we observed in section 10.2). However,

at worst, thoroughness feedback can spark both fixation and frustration. The

precipitous decline of implementation quality — but not test suite quality — on

Filesystem submissions in 2018 (section 6.5) might be explained by Examplar

inducing students to devote too much attention to catching chaffs, and too little

attention to ironing out their implementation. And, since Examplar does not

provide any hints as to how a chaff is buggy, students can only (and often do, in

CS-AccInt) seek help from course staff when faced with a stubborn, uncaught

chaff. Worryingly, some students frustrated by uncaught chaffs might not seek

help at all, and suffer privately.

Since Examplar, itself, does not implement any safeguards that prevent these

pathological cases, we rely on course staffs’ careful application of chaff curation

best practices (appendix A). The fragility of this approach compels us to question:

How could the implementation of thoroughness feedback be improved? For performance

reasons, we recommend that Examplar is deployed with no more than ten chaffs

(appendix A.5), but it may be that this small number encourages too much

fixation on particular chaffs — would an IDE that selects chaffs dynamically,

or can quickly execute dozens of chaffs, induce less fixation or frustration from

uncaught chaffs? Or, the IDE could, for instance, provide hints about why a chaff
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is buggy. Or, the IDE could allow students to ‘mute’ stubborn, uncaught chaffs

from the IDE’s thoroughness feedback. This design space is enormous.

11.1.3 Opportunities in Configuration

Several of our recommendations for chaff curation (appendix A) are rooted in

intuition, not data. For instance, our recommendation that Examplar is deployed

with no more than ten chaffs (appendix A.5) stems from a concern that any more

would, cumulatively, be “too slow to run” or “too fatiguing to catch”. Could these

performance and difficulty constraints be estimated more rigorously?

We also recommend that instructors applying our assessment model select

chaffs whose bugs reflect conceptual issues, rather than careless programming

errors (appendix A.2). This recommendation is rooted in an assumption that

artisanal, conceptually-flawed chaffs are more effective at revealing student mis-

conceptions than other approaches of chaff curation. However, curating such

chaffs demands significant effort from instructors, which may discourage them

from adopting example feedback wholesale. How effective, comparatively, are

simpler, programming-error-based chaffs at assessing student understanding?

This recommendation also stems from (1) our postulate that early feedback

about one’s problem understanding is more important than early feedback about

how well one’s test suite catches careless programming errors, and (2) our

assumption that the set of chaffs used in Examplar must be fairly small and thus

instructors should prioritize conceptually-flawed chaffs over chaffs with careless

programming errors. However, the feedback provided by both kinds of chaffs

is clearly useful: students are probably as liable to make careless programming

mistakes as they are to have problem misconceptions! How might an Examplar-like

environment improve their test suite’s detection of programming errors?

11.1.4 Opportunities in Circumstances

Lastly: There are significant opportunities in exploring the circumstances in which

Examplar-like tools are deployed. For one, our large-scale studies of Examplar

were limited to a single course context, CS-AccInt, and the efficacy of Examplar

in that context was undoubtedly affected by the characteristics of CS-AccInt. For

instance, the assessment model used to grade students’ tests in CS-AccInt was

closely aligned with the assessment model employed by Examplar. In contrast,

the assessment model used for grading by CS-Foundations was not aligned with

Examplar’s assessment model, and CS-Foundations students voiced confusion

and frustration about this misalignment (section 10.2). The impact of these kinds
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of synergies and syzygies warrants further investigation. How important is it to

align IDE-provided feedback with the grading mechanisms of the course?

The circumstances of Examplar’s deployment in CS-AccInt also limited our

research opportunities in that context. Our initial study of Examplar (chapter 6)

was the only one in which we were able to reasonably compare between Exam-

plar’s non-users (the 2017 edition of CS-AccInt) and users (the 2018 edition of

CS-AccInt). The results of that study dissuaded us from withholding Examplar’s

feedback from students in later editions of the course, and the accumulation of

small assignment revisions prevented us from drawing fair comparisions between

future editions of CS-AccInt and its 2017 edition. Consequently, in chapter 8, we

could not compare the example-firstness scores of students exposed to Examplar’s

feedback to the scores a cohort without Examplar’s feedback. This key question

thus remains open: To what degree does exposure to validity and thoroughness feedback

influence students’ editing behavior?



A
T E N E T S O F C H A F F C U R AT I O N

More than an editing buffer, Examplar is a conversational partner: When a student

submits their tests to Examplar, the IDE replies with validity and thoroughness

feedback. It can inform the student whether their tests are valid or invalid; if

their tests are valid, it can additionally inform them whether they have caught

or missed each of the assignment’s chaffs. However, while Examplar might

be a wittier interlocutress than any other text editor the student has used, the

automated TA lacks some of the basic competencies of its fleshy colleagues.

Examplar has no heuristic for frustration, nor any capacity for compassion. It

does not possess discretion, much less exercise it. Examplar (in its infinite hubris)

does not seek help from other course staff when its students need it.

Given these limitations, the role played by course staff in the configuration of

Examplar is critical: their curation of chaffs moulds the conversations students

will have with Examplar. With each chaff, the instructors prime Examplar to

remind students “there is something you are not yet testing”. Whether students

regard these reminders as insightful or frustrating hinges largely on the nature of

the chaffs. Unfortunately, we can offer few hard-and-fast rules for chaff selection.

In stark contrast to wheats, the curation of chaffs is almost entirely a creative

exercise. Yet, what began, for us, as a small set of intuitions (see section 2.1.3),

has since been honed by hard lessons in the years following Examplar’s initial

deployment. This appendix reifies those intuitions and lessons into eight key

tenets for chaff curation. There surely are more lessons yet-to-be-learned.

a.1 favor covering the api

Strive to ensure that for each item (e.g., function, constant, etc.) defined by the

assignment, there is a chaff that implements that item in a flawed manner. For

instance, an assignment that defines five ‘public’ functions should have at least

five distinct chaffs (see Avoid chaffs with multiple bugs), each implementing a buggy

version of one of the five functions. A missing chaff — provided it is not to
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difficult to catch (see Avoid difficult-to-catch chaffs) — then signals to the student

that they’ve yet to explore some well-defined facet of the specification.

This tenet must be balanced with Avoid long-running wheats & chaffs, since an

assignment should not have so many chaffs that Examplar is unable to provide

timely feedback. If full coverage of the API is impossible, prioritize covering the

items where logical errors are likeliest to occur.

a.2 favor logical errors over programming errors

Each chaff represents a single opportunity to communicate to the student that a

facet of the assignment is not yet represented in their test suite. Unfortunately,

because you1 must Avoid long-running wheats & chaffs, you are typically limited

to at most ten chaffs in Examplar. This limited number of communication op-

portunities is best expended on guiding students towards identifying problem

misconceptions, rather than helping the student develop a test that is sensitive to

subtle programming errors. While it is important that students eventually develop

test suites that are highly capable at detecting programming errors, ensuring

problem understanding has priority. For this reason, we favor flaws in chaffs that

correspond to misconceptions, rather than programming errors.

This tenet must, occasionally, be balanced with Favor covering the API, since very

simple items defined by the assignment may not lend themselves to interesting

logical errors. In these circumstances, we tended to err on the side of covering

the API and use a simple programming error as our chaff’s flaw.

a.3 avoid chaffs with multiple bugs

Examplar’s vocabulary is highly limited: the “chaff missed” feedback is the sole

mechanism by which Examplar informs the student that they have a gap in their

tests, and it is only upon the first detection of a flaw in a chaff that feedback

for that chaff changes (it transitions from missed to caught). Examplar cannot

communicate whether additional, latent flaws remain. If finding these additional

flaws is pedagogically important (and it always should be), then it is best to give

those flaws their own distinct chaffs. For this reason, we strongly recommend

against crafting chaffs that contain multiple flaws.

Do not compromise this tenet in order to Favor covering the API and Avoid long-

running wheats & chaffs. You cannot satisfy Favor covering the API by compromising

this tenet, because a single chaff cannot communicate that a student is missing

tests of multiple items.

1 This appendix is addressed, in particular, to course staff seeking to deploy Examplar.
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a.4 avoid difficult-to-catch chaffs

Again, Examplar’s vocabulary is highly limited: it cannot provide students with

hints, nor seek help from course staff when students need it. In the absence of

these mechanisms, students may expend excessive amounts of time trying to

catch a missing chaff, then be driven to tears by frustration if they are unable to

do so. The onus is on course staff to configure Examplar to minimize excessive

frustration. Do not select difficult-to-catch chaffs.

Consideration must also be paid to the cumulative difficulty of chaffs. While it

may be feasible to both have many chaffs and Avoid long-running wheats & chaffs,

the cumulative difficulty of catching all chaffs should not be overly taxing.

This tenet must be balanced with Favor logical errors over programming errors:

Using a chaff with a subtle error may be justifiable, so long as that error highlights

a critical conceptual facet of the problem. A chaff that implements a programming

error (that isn’t pedagogically critical) should never be difficult to catch.

a.5 avoid long-running wheats & chaffs

Examplar is intrusive: it interjects itself upon each click of Run to execute students’

tests against each wheat and chaff. If this interruption takes excessively long,

Examplar will perversely incentivize students to either write fewer tests, or to

seek feedback less frequently. Instructors should strive to ensure that Examplar’s

feedback is produced swiftly for most students.

To manage total execution time, one must consider (1) how many tests students

will write, (2) the total number of wheats and chaffs, and (3) the combined

performance characteristics of the wheats and chaffs.

Although you wield little control over how many tests students will write,

accounting for this factor is critical to estimating your performance budget.

Feedback latency should be tolerable even for a very thorough test suite. The

test suite used for final grading of implementations (provided that it is also

capable of catching every final grading chaff) tends to be a good benchmark

for performance. Be mindful of the interplay between learning and test writing.

For instance, a lesson on property based testing will likely be followed by some

students applying that technique to their own test suites, resulting in potentially

hundreds of generated test cases.

With a benchmark in hand, you can begin selecting wheats and chaffs. The

number of wheats should be aggressively minimized: it is often sufficent to have

at most two wheats (see section 2.1.3). As a rule of thumb, there should be strictly

fewer than ten chaffs. Of course, this must be balanced with Favor covering the API.
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Additionally, avoid selecting chaffs whose flaws are computationally expensive

(in the extreme: Never use chaffs prone to non-termination).

Examplar supports distributing wheats and chaffs both in source form, and as

compiled binaries. Although source-distributed wheats and chaffs are convenient

for assignment development, the wheats and chaffs should be compiled prior

to deploying the assignment to students. The decision of distribution mode

is sometimes, incorrectly, framed as being about whether the risk of students

peering at the source code of wheats and chaffs is acceptable. Even if this risk is

acceptable, wheats and chaffs should be distributed in compiled form; doing so

drastically improves performance.

This tenet must be balanced with Favor covering the API and Favor logical errors

over programming errors. For all but the simplest assignments, it is impossible to

satisfy all three of these tenets. Carefully weigh improvements in performance

against the pedagogic cost of sacrifices in coverage and inclusion of insightful

chaffs.

a.6 avoid non-deterministic chaffs

The dialogue between student and Examplar should be should be (and be per-

ceived as) both predictable and reliable. In the absence of non-deterministic tests,

Examplar’s feedback should be strictly deterministic; an unchanged test suite

should yield identical feedback each time it is run. A chaff, once caught, should

remain caught. And, in keeping with Avoid difficult-to-catch chaffs, there should be

no element of luck in catching a chaff. To achieve this, avoid non-deterministic

chaffs.

a.7 never use chaffs prone to non-termination.

As a corollary to Avoid long-running wheats & chaffs, chaffs used in Examplar

must never fail to terminate. Non-terminating chaffs create a perverse incentive

for students to delete effective tests. Unless the student stops execution (which

deprives them of any feedback), the student’s internet browser will, eventually,

forcibly kill the tab Examplar is open in.

Assessing whether a chaff is prone to non-termination requires thinking adver-

sarially about the interplay between the chaff’s flaw and the sort of tests students

might write; see section 2.2.4 for an example where an unforeseen interaction

between chaffs and tests led to non-termination.
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a.8 never use ill-typed chaffs

Never use chaffs whose flaw is a type error. A chaff must conform to the signature

of the specification, and only contain dynamic flaws. While one should Favor

logical errors over programming errors, ill-typedness is the most basic of problem

misconceptions. Even a fairly rudimentary test suite will, implicitly, test the types

of items by virtue of calling functions and comparing their outputs to expected

values. If a student has a misconception about the type of a function and reflects

that misconception in their test suite, those ill-typed tests will first reject the

wheats and the chaffs will not even run. It is therefore a wasted opportunity to

use the chaffs to highlight type misconceptions.
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