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ABSTRACT

Students faced with a programming task often begin their imple-
mentation without a sufficient understanding of the problem. Sev-
eral prior papers suggest that formulating input-output examples
before beginning one’s implementation is the key to averting prob-
lem misunderstandings, but that students are loath to actually do
it. Is outright coercion instructors’ only hope to convince students
to follow this methodology and hence help themselves?

We conjecture that students’ reluctance may stem from the dis-
affordances of their programming environments. In this work, we
augment the student’s programming environment to encourage
examples-first development, and design a novel measure to assess
students’ adherence to this methodology. We apply these measures
to students using our modified environment in a semester-long
course, and find high voluntary adherence, especially relative to
the literature’s low expectations.
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1 INTRODUCTION

Students faced with a programming problem often begin their im-
plementation work without a complete understanding of the prob-
lem [7, 11, 12], because they lack the metacognitive awareness
to self-regulate their progress [7]. Educators have long attempted
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to support metacognition by instructing students in an explicit
problem solving methodology, ranging from Pélya’s 1945 How to
Solve It [9] for mathematics, to How to Design Programs’s “Design
Recipe” [4], to Loksa et. al’s 2016 six-step metacognitive scaffold [8].
All three of these scaffolds ask students to begin by reinterpreting
the problem to ensure they understand it, and to end by reviewing
their solution. In the Design Recipe, reinterpretation culminates
with the development of illustrative input-output examples; review
culminates in testing. (In our work, examples and tests share the
same syntax; they differ only in their purpose.)

In controlled environments where students can be repeatedly
reminded to follow these scaffolds, students have higher productiv-
ity, self-efficacy, and independence [8]. Where students are forced
to solve input—output examples before beginning their implemen-
tations, they may produce better solutions [10] and make fewer
errors [2]. However, left to their own devices students may lack
the metacognitive awareness to realize they even need to apply
these scaffolds. Students who are encouraged to follow the Design
Recipe in lecture may not formulate any examples or test cases
and consequently struggle [5]. Requiring the final submission of
test cases on assignments will coax students to write them, but not
necessarily well: A study by Edwards and Shams [3] of students
trained in test-driven development and graded on test suite cover-
age found that students’ tests were both few and uninformative;
most students wrote exactly as many tests as there were methods,
and those tests tended to only evaluate the “happy path” of their
respective methods.

Given the bleak research literature, it is unsurprising that recent
work [2, 10] has explored (with success) forcing students to solve
input-output examples before allowing them to begin their imple-
mentation work. Unfortunately, forcing students can make them
resentful of the activity, want to get out of it as quickly as possible,
find it inauthentic, and create barriers of trust between students
and faculty. Thus, coercion should only be a last resort.

Fortunately, there is also cause to not abandon hope of students’
ability to self-regulate: our prior work demonstrates that students
can produce numerous, high-quality tests [14] given the right as-
sessment methodology, and that, when aided by helpful feedback,
will even write tests when not required to do so by the assign-
ment [13]. With the right incentives and support, students can be
coaxed to test—but can they be coaxed to test early? In this work,
we augment the student’s programming environment to encourage
examples-first development, and design a novel measure to assess
students’ adherence to this methodology. We apply these measures
to students who used our modified environment in a semester-
long accelerated introductory computer science course, and find
high voluntary adherence, especially relative to the literature’s low
expectations.
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2 PEDAGOGIC CONTEXT

We assess the submissions of roughly sixty students in an acceler-
ated introductory computer science course at a private university in
the US. Most were first-year students but many had prior comput-
ing experience, and all had to pass a set of programming exercises
to gain entry. Enrollment declined slightly over the course of the
semester: 64 students submitted the first assignment; 59 submitted
the final assignment. Students were encouraged, but not required,
to follow the Design Recipe—unless they sought help, at which
point course staff would expect to see all the steps and help with
the earliest incomplete one.

2.1 Assignment Structure

The course was project-oriented, featuring 17 programming projects.!
For each of these assignments, students were required to submit a
code file containing their implementation, a tests file containing
their test suite, and a common file. The common file was a shared
dependency of both the tests and code file and provided a place
for course staff to provide common definitions, and for students to
write definitions useful to both their tests and code files (e.g., a
helper function).

Students’ final test suites were primarily graded on the basis of
their validity and thoroughness [13]. The validity of a test suite is
a binary measure of whether it does or does not conform to the
problem specification. A test suite is valid if it will accept all correct
implementations of the problem. The thoroughness of a test suite
is a measure of how effective the test cases are at catching bugs.
It is computed by running the student’s test suite against a set of
known-buggy implementations, and calculating the proportion that
the test suite rejected.

2.2 Programming Environment

For these assignments, students used a variant (pictured in fig. 1) of
the standard Pyret programming environment, modified to nudge
students towards the programming methodology urged by the in-
structor, i.e., to first explore the problem by writing interesting
examples before their implementation efforts. Adherence to this
methodology is a feat of self-regulation: a student must have the
willingness to follow this advice, the control to deliberately delay
implementation, and the perception to generate interesting exam-
ples. With four key modifications to students’ IDE, we sought to
nudge students to write examples early:

Testing is the Default. In the usual Pyret IDE, beginning one’s
implementation is effortless. In our modified IDE, the code file is
hidden until students click a Begin Implementation button.

Fast File Switching: The standard, web-based Pyret IDE is a single-
file editor; context switching between testing and implementing is
slow. The modified IDE allows students to quickly switch between
their code, tests, and common files.

Integrated Test Results: The standard Pyret IDE only displays
tests file test results when running in that file—not when running
in a code file that imports those tests. Our modified IDE shows test
results on every run, regardless of the current file.

Thttp://cs19.cs.brown.edu/2019/assignments.html
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Example Feedback: Our prior Examplar [13] IDE provided stu-
dents with on-demand feedback on the validity and thoroughness
of their examples, independent of their implementation progress.
Unfortunately, it is a distinct tool from the IDE in which students
do their implementation work; Examplar thus could only benefit
students when they possessed the self-awareness to realize they
ought to use it.

In contrast, our new IDE provides students with Examplar-style
feedback on every run, regardless of the open file. As with our prior
work [13], we compute the thoroughness aspect of this feedback
using only a handful of buggy implementations that explore the
logically-interesting aspects of the problem by realizing those as-
pects incorrectly (rather than subtle implementation bugs). This
integrated feedback reifies the “interestingness” of a student’s exam-
ples: each additional buggy implementation caught by the student
provides an assurance that they correctly and thoroughly under-
stand the problem.

3 PRIOR ART

Kazerouni et al. [6] propose a family of metrics to assess the balance
and ordering of students’ testing efforts and implementation efforts
of students writing Java. In these metrics, “effort” is quantified by
the number of line-level changes between file-saves (as measured
by git diff), and is reported at three levels of granularity: project,
work-session, and method.

Unfortunately, line-based metrics are inherently sensitive to
syntactic quirks. Minor stylistic preferences between students may
be reflected as substantial differences in effort. For instance, where
one student might write:

let foo = if a { b } else { ¢ };

...another might, equivalently, write:

let foo;
if a {
foo = b;
} else {
foo = c;
3

It seems unlikely that the latter takes six times as much effort to
write as the former.

Stylistic differences between students aside, line-based metrics
may also misrepresent an individual student’s balance of work be-
tween testing and implementation. In JUnit (the testing framework
used by students in Kazerouni et al’s work), the syntactic forms
associated with implementation work are very similar to those
associated with tests. However, some languages (like Pyret, which
we use) have concise testing syntax, making “lines” incomparable.

Buffardi & Edwards [1] assessed students’ adherence to test-
driven development by computing each student’s test coverage
(against their own implementation) averaged across their submis-
sions to an external automated assessment system. Unfortunately,
if submitting to the automated assessment system is tedious, stu-
dents may leave their IDE to do so only infrequently—this interval
of observation is thus potentially too infrequent to compose an
adequate picture of a student’s incremental progress.
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Stop

include my-gdrive("median-code.arr")
include my-gdrive("median-common.arr")
# DO NOT CHANGE ANYTHING ABOVE THIS LINE

v check:

7v median([list: 1]) is 1

9v median([list: 1, 2, 3]) is 2

1

11v median([list: 2, 4, 3, 1]) is 2.5

1

1

2
3 end

Emedian-tests.arr

These tests are valid and consistent with the assignment handout. They caught 2 of 4
sample buggy programs. Add more test cases to improve this test suite's thoroughness.

Figure 1: Our editing environment requires students click BEGIN IMPLEMENTATION before beginning their implementation,
and provides integrated feedback about the quality of tests on each run.

4 DISCRETIZING EFFORT

To assess students’ testing and implementation efforts over time,
we must define both an interval of observation, and a unit of effort.
We derive both of these from clicks of the Run button.

The intervals created by successive runs provide a meaningful
unit of effort: a programmer clicks Run with the frequency at
which they wish to receive feedback. Whatever amount of testing
or implementation a student completes between two successive
runs reflects, by definition, the amount of testing or implementation
effort which that student was comfortable undertaking on their
own before requesting feedback again. In contrast, file saves only
reflect the frequency at which students wish to preserve their work.

To quantify a student’s balance of implementation versus testing
effort, we might simply contrast the number of test-and-run inter-
vals to the number of implement-and-run intervals. However, if stu-
dents tend to both implement and test within the same run-intervals,
these intervals will be too coarse to be informative: test-and-run in-
tervals and implement-and-run intervals will be one-and-the-same.
We posit that students tend to compartmentalize their work inside
run-intervals to either testing or implementation—rarely both.

4.1 Compartmentalization of Effort

We therefore begin by asking: do students tend to compartmentalize
their work-between-runs to one of either testing or implementa-
tion? Yes. To produce this answer, we instrumented our editor to
track the files modified within each run interval, and then counted
and compared the number of runs occurring after each of the eight
possible combinations of file modifications:

6.45% of runs followed
no modifications

1} = 7111 }

|[{code}| = 54026
|[{tests}| = 34087
[{common}| = 4148

83.73% of runs followed
modifying one file

|{code, tests}| = 5480

[{code, common}| = 1745 9.82% of runs followed
|{tests, common}| = 2191 modifying multiple files
|{code, tests, common}| = 1403

Run-intervals in which students edited multiple files were rare:
among the 98,932 run-intervals which included edits to students’
text or code files, only 6,883 (6.96%) entailed edits to both.

4.2 Effort Across Assignments

How did effort vary between assignments? To assess this, we
should not assume that effort, as measured by sheer number of
run-intervals, is directly comparable between students; different
students might simply tend to click Run with different frequency.

We begin by establishing, for each student, baselines which
characterizes their “usual” number of testing and implementation
run-intervals: that student’s average number of implementation and
testing intervals across all assignments, and the standard deviation
of those quantities for each assignment. We then plot, in fig. 2, each
student’s relative quantity of implementation and testing intervals
for each assignment, measured in units of standard deviations from
that student’s mean. (We exclude two assignments for which we
failed to log data, and the three partner assignments.)

The testing and implementation effort involved in each assign-
ment seems substantially impacted by the character of the assign-
ment. For instance, the three assignments (SORTACLE, ORACLE, and
MST) in which students implemented testing oracles (programs
that test other programs) uniformly involved fewer-than-typical
implementation and testing intervals. (A possible factor: these as-
signments do not have a binary notion of correctness, and thus inte-
grated validity-thoroughness feedback was not available for them.)
Another trio of similar assignments, TWEESEARCH1, TWEESEARCH?Z,
and TWEESEARCH3, involved similar distributions of effort.

5 EXAMPLES-FIRST ADHERENCE

5.1 When do students click BEGIN
IMPLEMENTATION?

Oftentimes immediately. Of 703 logged run sequences in which
students clicked BEGIN IMPLEMENTATION,? 363 (51.64%) clicked
BEGIN IMPLEMENTATION before clicking RuN for the first time. Of
these, 165 (45.45%) actually edited their code file within that same
initial run-interval. This suggests that about half of students who
clicked BEGIN IMPLEMENTATION immediately did not necessarily do
so to begin their implementation.

Without a population to compare to, we cannot say with any
certainty that hiding the code file behind a BEGIN IMPLEMENTATION
button swayed students towards initial testing. Nonetheless, we are
encouraged by these data. We anticipated that most students would

2There were 4 logged sequences in which students never clicked BEGIN IMPLEMENTA-
TION. Three of these sequences occurred on assignments completed with a partner.
We presume that, in these cases, the partner did the implementation work.
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Figure 2: Each point reflects the relative testing and implementation effort of a student, measured in standard deviations from
their typical testing and implementation efforts. Implementation effort ranges on the x-axes; testing ranges on the y-axes.
Assignments are parenthetically numbered with the index of their appearance in the course.

reflexively click BEGIN IMPLEMENTATION immediately, yet about
half of students did not. Of those who did, about half did not actually
edit their implementation within that run-interval. This suggests
that many students may be clicking BEGIN IMPLEMENTATION just
to survey the initial contents of the code file.

These data point to a possible design improvement: if students
wish to be able to see the code file, make its contents initially visible
but un-editable (until students click BEGIN IMPLEMENTATION).

5.2 How thoroughly do students test prior to
their implementation efforts?

A student who adheres to an examples-first programming methodol-
ogy will develop interesting examples prior to their implementation
efforts. The examples must be interesting, because uninteresting
assertions do not probe one’s understanding of the problem. This
example-writing must occur prior to implementation, because writ-
ing input-output assertions after implementation is merely testing—
tests confirm implementation correctness; examples anticipate it.
Consequently, a good metric of examples-first adherence should:

e Evaluate the quality of examples—not the quantity: the mea-
sure should not reward uninteresting assertions, and should
be unaffected by the volume of edits to the tests file.

e Reward a student’s authorship of interesting examples prior
to implementation: interesting examples written after imple-
mentation contribute less to problem understanding.

e Not penalize students for using tests to review their imple-
mentation efforts: modifications to tests after implementa-
tion efforts should not contribute negatively.

These properties are satisfied by the mean implementation-interval
thoroughness (M11T, for short): the mean of the peak thoroughness

achieved prior to each implementation interval. Concretely, con-
sider this (synthetic) sequence of run-intervals:

Olclcilolelolo o001

The fractions denote the thoroughness feedback resulting from
that run, and @ denotes that the run resulted in an error; [ de-
notes modifications to tests, and [2) denotes modifications to
code. Now, consider only the impl(ementation)-intervals:

G@EE]

This student completed 3 impl-intervals after achieving a peak thor-
oughness of 2/5, and one more after achieving a peak thoroughness
of 3/5. Their m1IT is therefore (2/5 X 3 + 3/5 X 1)/4 = 0.45.

We use the peak thoroughness achieved prior to each imple-
mentation interval (as opposed to the last thoroughness achieved)
because where thoroughness declines, it is usually because the
student has written a very large test suite and has commented
most or all of it out to either focus on a particular test result, or to
temporarily hasten their edit-and-run cycle.

Figure 3 visualizes students’ MirT for each of the non-partner
assignments with validity-thoroughness feedback. (We exclude the
partner assignments, because we cannot always combine the logs
of cooperating students into a single consistent timeline of work.)
We hoped that providing students with integrated feedback on their
examples would guide them to achieve some level of thoroughness
prior to their implementation efforts. However, mindful of the frus-
tration that ensues when students are unable to catch all the buggy
implementations, the instructor told them to try to catch “most of
them” but move on once they had done so instead of getting bogged
down. Indeed, students typically voluntarily achieved a moderate
level of thoroughness before the bulk of their implementation work:
the m1rT of the median student ranged from 2/5 to 5/6. Only a handful
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Figure 3: The muT of each student (represented by points) on each assignment. The shaded areas with fractional labels reflect
each possible level of thoroughness as the proportion of buggy implementations rejected. Underlaid box-and-whiskers plots

summarize the overall MmuT on each assignment.

of students on each assignment (six, on average) did not achieve
any thoroughness before the bulk of their implementation work.

6 DISCUSSION

We did not observe in our students many of the bleak results logged
by prior work: we found that most students did not begin their
implementation work immediately, and that the vast majority wrote
moderately thorough examples before their implementation efforts.
Absent further study, we cannot causally link our IDE modifica-
tions, specifically, to our positive results. Consider, for instance:

e Examples-first development is less rigid than test-driven
development (which prescribes a strict interleaving of testing
and implementation) and thus perhaps easier to adhere to.

e Pyret has a very lightweight, native syntax for test cases.

o The functions implemented by students are “pure”, and thus
more easily testable than if they involved side-effects.

Still, our work serves as a preliminary (positive) assessment of
students’ self-regulation abilities, as an example of how researchers
might consider whether IDE disaffordances have warped student
behavior, and as a toolbox for future analyses of students” example-
writing behavior.
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